Filters and QC

filterSeurat()

Apply QC filters to Seurat Object

clusterFilter()

Filter seurat object by specified cluster ids

cleanCluster()

Clean clusters

cleanFilterGenes()

Clean and filter gene list

findArtifactGenes()

Identify artifact genes

getExpressedGenes()

Identify expressed genes

getExpressingCells()

Get cells that express query gene

getMitoContent()

Calculate mitochondrial content

QC.scatterPlot()

QC scatter plots

QC.violinPlot()

QC violin plots

Dimensional Reduction

pcaElbow()

Quickly estimate the 'elbow' of a scree plot (PCA)

projectReduction()

Project dimensionally-reduced features onto UMAP

propVarPCA()

Variance explained by each principal component.

getReductionGenes()

Get top loaded features for PCA or ICA dimensional reduction.

runRPCA()

Run Robust Prinicipal Component Analysis

Clustering

setResolution()

Set cluster resolution

multiCluster()

Cluster seurat object at several resolutions

multiSpecificity()

Evaluate specificity of single-cell markers across several cluster resolutions.

multiSilhouette()

Evaluate silhouette indices of clustered single cell data across several cluster resolutions.

Cell-Type Annotation

Module detection

mikoScore()

Calculate Miko module scores for feature expression programs

nullScore()

Null distribution for standardized module scores.

sigScore()

Calculate Miko score significance

Gene Set Functions

AddSModuleScore()

Calculate standardized module scores for feature expression programs in single cells.

aggGroupExpression()

Get summary of group expression in Seurat object

avgGroupExpression()

Get summary of group expression in Seurat object

coherentFraction()

Calculate coherent fraction for feature expression program.

consolidateNMF()

Consolidate several NMF reduction objects into single NMF reduction object within Seurat object.

getJaccard()

Jaccard Similarity

id2geneset()

Get Reactome/GO geneset

id2term()

Map Reactome/GO ID to term

jaccardSimilarityMatrix()

Jaccard Similarity Matrix

optimalBinSize()

Identify optimal bin size for AddModuleScore() function

runAUC()

Run AUCell classification

runMS()

Run Modular Scoring

summarizeHG()

Summarize hypergeometric enrichment results

`{`()

Pathway annotations from Bader Lab

getAnnotationPathways()

Returns list of annotations for given Entrez gene IDs

runGSEA()

Run gene-set enrichment analysis (GSEA)

runHG()

Run hypergeometric gene enrichment analysis.

searchAnnotations()

Search Reactome/GO databases for terms that match query

signatureCoherence()

Evaluate signature coherence.

term2id()

Map Reactome/GO term to ID

upset.Plot()

Upset plot

Expression Functions

findCDIMarkers()

Calculate feature co-dependency index

findCorMarkers()

Calculate spearman correlations between features.

findGiniMarkers()

Calculate Gini marker specificity

getDEG()

Get differentially expressed genes

getExpressionMatrix()

Get expression matrix from Seurat Object

miko_volcano()

Draw volcano plot to visualize differential expression.

parCor()

Parallelized correlation

pseudotimeRF()

Identify pseudotime-dependent genes using Random Forest (RF) Model

Variance Decomposition

Variance decomposition analyses

vd_Formula()

Specify model formula for variance decomposition.

vd_Inputs()

Specify inputs for variance decomposition analysis

vd_Run()

Perform Variance Decomposition Analysis

vd_UMAP()

Generate UMAPs with each variance decomposition covariate overlaid.

Scale-Free Shared Nearest Neighbor Network Analysis (SSN)

SSN Module detection

SSNConnectivity()

SSN connectivity plot

SSNResolution()

Identify optimal cluster resolution of scale-free shared nearest neighbor network (SNN)

pruneSSN()

Identify and (optionally) prune gene program features in scale-free shared nearest neighbor network (SSN)

runSSN()

Perform gene program discovery using SNN analysis

SSNExpression()

SSN connectivity plot

findNetworkFeatures()

Identify features for gene program discovery.

getModuleGenes()

Get list of module genes

scaleFreeNet()

Apply scale-free topology transform to shared-nearest neighbor graph

summarizeModules()

Summarize SSN, ICA or NMF gene program/module analyses

Independent Component Analysis

ICA Module detection

getICAGenes()

Get significant ICA genes

runICA()

Run Independent Component Analysis on gene expression

Non-Negative Matrix Factorization

NMF Module detection

getNMFGenes()

Returns top module genes from NMF feature loading matrix

runNMF()

Perform non-negative matrix factorization (NMF)

Differential Abundance Analysis

da_DEG()

Identify correlated genes/pathways associated with differential abundance.

da_Run()

Run differential abundance analysis.

Visualization

cluster.UMAP()

UMAP stratified by cluster ID

expression.Plot()

Violin plot of single cell gene expression

exprUMAP()

Visualize gene expression on UMAP

featureGradient()

Visualize feature activity/expression gradient overlaid on UMAP

geneRepCurve()

Plot relationship showing percentage of cells expressing atleast percentage of genes

geom_split_violin()

Split violin plot using ggplot2

getUMAP()

Get UMAP data and plot from Seurat object.

miko_heatmap()

Function to draw ggplot heatmaps

scale_color_miko()

Gradient color scale

scale_fill_miko()

Gradient fill scale

scExpression.UMAP()

Cell-level gene expression projected on UMAP

theme_miko()

scMiko Theme

variableGenes.Plot()

Plot variable genes in Seurat Object

highlightUMAP()

Highlight cells on UMAP plot

Data

geneSets

List of scMiko gene sets

LR.db

Ligand-Receptor Database

Miscellaneous Utilities

autoPointSize()

Automatically determine optimal point size for geom_point()

balanceMatrixSize()

Balance matrix dimensions

categoricalColPal()

Generate categorical ColorBrewer palette.

citationCheck()

Check pubmed citations for genes

clearGlobalEnv()

Remove variables from global environment

col2rowname()

Assign column entries in data.frame to row names.

dist2hclust()

Hierarchially-cluster distance matrix

fixBarcodeLabel()

Fix barcode labels

getClusterCenters()

Get cluster centers

getConnectivity()

Gene connectivity within network.

getDensity()

Get local density (z) of bivariate relationship (x,y)

getNodesEdges()

Get nodes and edges from igraph data.frame for visNetwork

getOrderedGroups()

Get vector of unique ordered group names from Seurat Object

group2list()

Named list of cells grouped by meta feature from Seurat object

lintersect()

Returns intersection of all list entries.

longDF2namedList()

Convert long data frame to named list

miko_message()

Print message

namedList2longDF()

Convert named list to long data.frame

namedList2wideDF()

Convert named list to wide data.frame

orderedFactor()

Sort factor levels in numerical order

pseudoReplicates()

Create pseudo-replicates, stratified by grouping variable.

qNorm()

Quantile Normalization of 2 Vectors

rescaleValues()

Rescale values to specified range.

rmvCSVprefix()

Remove "ï.." prefix that is appended to csv header

scoreGBM()

Annotate glioblastoma (GBM) subtype based on Neftel 2019 scoring pipeline.

snip()

Winsorize values at lower and upper quantiles.

sim2adj()

Compute adjaceny matrix from similary (correlation) matrix

sparse2dense()

Convert sparse matrix to dense matrix

sparse2df()

Convert sparse matrix to data.frame

ulength()

Number of unique values

value2col()

Convert values to color gradient

wideDF2namedList()

Convert wide data.frame to named list

Integration Functions

miko_integrate()

scRNAseq integration wrapper

runScanorama()

Integrate scRNA-seq data using Scanorama

runBBKNN()

Integrate scRNA-seq data using batch-balanced KNN (BBKNN)

Seurat Functions

balanceSamples()

Subsample cells in seurat object to be balanced (sample-size-wise) across conditions.

downsampleSeurat()

Downsample single cell data

mergeSeuratList()

Merge list of seurat objects

neighborPurity()

Compute purity of each cell's neighborhood, as defined by KNN graph.

prepSeurat()

prep Seurat

prepSeurat2()

prep Seurat (Extended adaptation of prepSeurat)

recodeBarcode()

Recode (i.e., relabel) metadata in Seurat object

rmDuplicateGenes()

Remove duplicate genes from Seurat Object

scNormScale()

Normalize and Scale scRNAseq Data

subsetDimRed()

Get dimensional reduction from Seurat Object for subset of data

uniqueFeatures()

Get unique features from metadata column in seurat object.

updateDimNames()

Ensure that all dimNames are correctly specified in Seurat Object

wnn_Components()

Compute network component UMAPs and visualize component weights.

wnn_Run()

Run WNN Multi-Modal Integration.

Gene Representation

checkGeneRep()

Check gene representation

detectSpecies()

Determine species based on gene representation

ens2sym.so()

Convert gene ensemble to symbol in seurat object

sym2ens() ensembl2sym()

Convert gene symbol to ensembl

entrez2sym()

Convert entrez id to gene symbol

firstup()

Uppercase first letter and lowercase rest

inferSpecies()

Infer species from list of Ensemble ids

prepGeneList()

Prepare gene to ensemble conversion vector

speciesConvert()

Convert gene symbol representation to Hs or Mm

sym2entrez()

Convert gene symbol to entrez

Dashboard Utilities

addLogEntry()

Add entry to analysis log

barcodeLabels()

Subset and assign labels to seurat

flex.asDT()

Outputs datatable with print button options

flex.multiTabLogs()

Generate multi-tab analysis log list for flexdashboard

flex.multiTabPlot()

Generate multi-tab ggplot handle list for flexdashboard

flex.multiTabPlotly()

Generate multi-tab list of plotly figures for flexdashboard

flex.multiTabTables()

Generate multi-tab datatable list for flexdashboard

getLoadPath()

Return load path

initiateLog()

Initiate analysis log

loadCellRanger()

Load CellRanger preprocessed data

loadMat()

Load gene x cell count matrix into seurat object

loadMoffat()

Load preprocessed data from Moffat lab sciRNA-seq3 pipeline

updateCentralLog()

Update central log

Save Functions

saveHTML()

Save figure as html

savePDF()

Save figure as pdf