# load package
library(scMiko)
library(DT)

Cell-type markers

Marker-based cell-type annotation requires a reference databse comprised of cell-type annotated gene sets. To generate a cell-type marker reference catalog, we derived cell-type markers from public diverse scRNAseq atlases and using the Wilcoxon DE method to identify differentially-expressed genes across author-curated cell types. All markers satisfying logFC > 0.5, AUROC > 0.95 and FDR < 1% were included. If less than 15 markers were identified per a cell-type using these criteria, the top N markers (ranked by logFC) that satisfied FDR < 1% were taken to ensure the minimum 15 markers per cell-type requirement was satisfied.

Cell-type marker catalog

Table of cell-type markers

# load markers (loaded as data.frame)
cell_catalog <- geneSets[["Cell_Catalog"]]

# list representation as follows:
cell_catalog.list <- wideDF2namedList(cell_catalog)

# show table
flex.asDT(cell_catalog, page_length = 10, scrollX = TRUE)

Represented cell-types

Here is a cell-type look up table to check cell-type representation in our catalog.

# show cell-types
flex.asDT(data.frame(cell_types = names(cell_catalog.list)), page_length = 10)

Single cell atlases

Here are the annotated atlases that were used to derive our marker catalog:

Cao 2019 | Murine Organogenesis Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D. M., Hill, A. J., . . . Steemers, F. J. (2019). The single-cell transcriptional landscape of mammalian organogenesis. Nature, 566(7745), 496-502. link

Cao 2020 | Human Fetus Cao, J., O’Day, D. R., Pliner, H. A., Kingsley, P. D., Deng, M., Daza, R. M., . . . Zhang, F. (2020). A human cell atlas of fetal gene expression. Science, 370(6518). link

La Manno 2021 | Developing Murine Brain La Manno, G., Siletti, K., Furlan, A., Gyllborg, D., Vinsland, E., Mossi Albiach, A., . . . Dratva, L. M. (2021). Molecular architecture of the developing mouse brain. Nature, 596(7870), 92-96. link

Pijuan-Sala 2019 | Murine Gastrulation Pijuan-Sala, B., Griffiths, J. A., Guibentif, C., Hiscock, T. W., Jawaid, W., Calero-Nieto, F. J., . . . Ho, D. L. L. (2019). A single-cell molecular map of mouse gastrulation and early organogenesis. Nature, 566(7745), 490-495. link

Tabula Muris | Murine Cell-Type Atlas Consortium, T. M. (2018). Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature, 562(7727), 367-372. link

Tabula Sapiens | Human Cell-Type Atlas Quake, S. R., & Consortium, T. S. (2021). The Tabula Sapiens: a single cell transcriptomic atlas of multiple organs from individual human donors. Biorxiv. link

Tyser 2021 | Human Gastrulation Tyser, R. C., Mahammadov, E., Nakanoh, S., Vallier, L., Scialdone, A., & Srinivas, S. (2021). Single-cell transcriptomic characterization of a gastrulating human embryo. Nature, 1-5. link

Zeisel 2018 | Adolescent Murine Brain Zeisel, A., Hochgerner, H., Lönnerberg, P., Johnsson, A., Memic, F., Van Der Zwan, J., . . . La Manno, G. (2018). Molecular architecture of the mouse nervous system. Cell, 174(4), 999-1014. e1022. link

 

Other cell-type databases

There are other cell-type marker databases available, including PanglaoDB, CellMarkers and MSigDB

We have consolidated the cell-type markers from PanglaoDB and CellMarkers, and they can be accessed as follows:

PanglaoDB

# load markers
murine_markers <- geneSets[["Panglao_Mm"]]
human_markers <- geneSets[["Panglao_Hs"]]

flex.asDT(human_markers, page_length = 10, scrollX = TRUE)

CellMarkers

# load markers
cell_markers <- geneSets[["CellMarker_Hs_Zhang2019"]]

flex.asDT(cell_markers, page_length = 10, scrollX = TRUE)

Session Info

## R version 4.0.3 (2020-10-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19041)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_Canada.1252  LC_CTYPE=English_Canada.1252   
## [3] LC_MONETARY=English_Canada.1252 LC_NUMERIC=C                   
## [5] LC_TIME=English_Canada.1252    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] DT_0.19             scMiko_0.1.0        flexdashboard_0.5.2
## [4] tidyr_1.1.3         SeuratObject_4.0.4  Seurat_4.1.0       
## [7] dplyr_1.0.7         ggplot2_3.3.5      
## 
## loaded via a namespace (and not attached):
##   [1] Rtsne_0.15            colorspace_2.0-2      deldir_0.2-10        
##   [4] ellipsis_0.3.2        ggridges_0.5.3        rprojroot_2.0.2      
##   [7] fs_1.5.0              spatstat.data_2.1-0   leiden_0.3.9         
##  [10] listenv_0.8.0         ggrepel_0.9.1         fansi_0.5.0          
##  [13] codetools_0.2-16      splines_4.0.3         cachem_1.0.6         
##  [16] knitr_1.36            polyclip_1.10-0       jsonlite_1.7.2       
##  [19] ica_1.0-2             cluster_2.1.0         png_0.1-7            
##  [22] uwot_0.1.10           spatstat.sparse_2.0-0 shiny_1.6.0          
##  [25] sctransform_0.3.3     compiler_4.0.3        httr_1.4.2           
##  [28] assertthat_0.2.1      Matrix_1.3-4          fastmap_1.1.0        
##  [31] lazyeval_0.2.2        later_1.3.0           formatR_1.11         
##  [34] htmltools_0.5.2       tools_4.0.3           igraph_1.2.6         
##  [37] gtable_0.3.0          glue_1.4.2            RANN_2.6.1           
##  [40] reshape2_1.4.4        Rcpp_1.0.7            scattermore_0.7      
##  [43] jquerylib_0.1.4       pkgdown_1.6.1         vctrs_0.3.8          
##  [46] nlme_3.1-149          crosstalk_1.1.1       lmtest_0.9-38        
##  [49] xfun_0.26             stringr_1.4.0         globals_0.14.0       
##  [52] mime_0.11             miniUI_0.1.1.1        lifecycle_1.0.1      
##  [55] irlba_2.3.3           goftest_1.2-2         future_1.22.1        
##  [58] MASS_7.3-53           zoo_1.8-9             scales_1.1.1         
##  [61] spatstat.core_2.3-0   ragg_1.1.3            promises_1.2.0.1     
##  [64] spatstat.utils_2.2-0  parallel_4.0.3        RColorBrewer_1.1-2   
##  [67] yaml_2.2.1            memoise_2.0.0         reticulate_1.20      
##  [70] pbapply_1.5-0         gridExtra_2.3         sass_0.4.0           
##  [73] rpart_4.1-15          stringi_1.7.4         highr_0.9            
##  [76] desc_1.3.0            rlang_0.4.11          pkgconfig_2.0.3      
##  [79] systemfonts_1.0.2     matrixStats_0.61.0    evaluate_0.14        
##  [82] lattice_0.20-41       tensor_1.5            ROCR_1.0-11          
##  [85] purrr_0.3.4           patchwork_1.1.1       htmlwidgets_1.5.4    
##  [88] cowplot_1.1.1         tidyselect_1.1.1      parallelly_1.28.1    
##  [91] RcppAnnoy_0.0.19      plyr_1.8.6            magrittr_2.0.1       
##  [94] R6_2.5.1              generics_0.1.0        DBI_1.1.1            
##  [97] mgcv_1.8-33           pillar_1.6.4          withr_2.4.2          
## [100] fitdistrplus_1.1-5    abind_1.4-5           survival_3.2-13      
## [103] tibble_3.1.4          future.apply_1.8.1    crayon_1.4.1         
## [106] KernSmooth_2.23-17    utf8_1.2.2            spatstat.geom_2.2-2  
## [109] plotly_4.9.4.1        rmarkdown_2.11        grid_4.0.3           
## [112] data.table_1.14.0     digest_0.6.27         xtable_1.8-4         
## [115] httpuv_1.6.3          textshaping_0.3.5     munsell_0.5.0        
## [118] viridisLite_0.4.0     bslib_0.3.0