Description | Variable Name | Value |
---|---|---|
Module | Preprocessing & QC | |
Date | Sys.time() | 2022-01-24 15:34:07 |
Input Expression Matrix | input_data | C:/Users/Owner/Dropbox/PDF Projects - JM/R Packages/scMiko/data/manno_count_matrix.rds |
gene/cell Upper Limit (N/cell) | gene.upperlimit | 9000 |
gene/cell Lower Limit (N/cell) | gene.lowerlimit | 200 |
Filtered by unmatched reads | unmatched.rate.filter.flag | TRUE |
Mitochondrial Content Upper Limit (%/cell) | mt.upperlimit | 10 |
Data Subsampled | subsampled | FALSE |
Cluster Resolution | cluster.resolution | 1 |
Filtered by species | species.filter.flag | FALSE |
Number of Workers | normScale | 1 |
Variables regressed out | vars2regress | percent.mt |
Input Species | all_input_organisms | |
Feature selection method | feature.select.method | hvg |
PCA component selection method | pca.component.select.method | cum_var |
Normalization Method | norm_method | SCT |
PCA Method | pca.method | pca |
Principal Components Included | nDim | 32 |
Unmatched rate upper limit | unmatch.high | 1 |
Unmatched rate lower limit | unmatch.low | 0 |
nPCA components used | nDim | 32 |
Run Time (s) | elapsed.time | 166.27 |
Run Identifier | run.id | output_33647PM |
Scaling method | scale.method | sct |
Output Saved | save.flag | TRUE |
Description | Variable Name | Value |
---|---|---|
Module | Query Feature Exploration | |
Date | Sys.time() | 2022-01-26 20:15:50 |
Query File | input.file | C:/Users/Owner/Dropbox/PDF Projects - JM/Data/scRNA-seq/01_sci-RNA-seq3_Hong_Kevin_Jason/NM_HH/Data/Preprocessed_Datasets/output_33647PM_demo_manno_10000cell.Rdata |
Gene Set Name | features | |
Compute geneset module score | meta.module.flag | FALSE |
Species | general.species | Mm |
Which Subset Groups | subset.df | no.subset |
Min expr. fraction for cor. analysis | cor.min.expr | 0.05 |
Clusters cleaned | general.clean.clusters | TRUE |
Cluster Resolution | general.cluster.resolution | 0.4 |
Grouping Variable | group_name | Clusters |
N Groups | n_group_members | 22 |
Top N correlations | corr.top.n | |
subsample_factor | general.subsample.factor | 1 |
schex used for UMAPs | expression.do.hex | FALSE |
PDF saved | general.save.pdf | FALSE |
correlation data | cor.which.data | data |
N Cells | n.cells.analyzed | 9529 |
Correlation Metric | cor.method | cdi |
Query Markers | markers_of_interest | Rtn1, Tubb2a, Vim, Mdk, Alas2, Hba-a1, Col1a2, Dcn, Ramp2, Cldn5, Krt8, Krt18, Tubb5, Tmsb10, Cited1, Rbp4, Igfbp7, Cald1, Tyrobp, Cst3, Nrxn3, Unc5c, Pf4, Mrc1, Neurod6, Celf2, Ttr, Calml4, Serpine2, Dbi, Dlx6os1, Serpinh1, Pfn1, Creb5, Npm1, Ldha, Rps27a, Rps2, Dscam, Barhl1, Cd63 |
Seurat Assay | DefaultAssay(so.query) | SCT |
N genes for correlation | nrow(cor.mat) | 14432 |
Run Time (s) | elapsed.time | 316.15 |
Run Identifier | run.id | output_81849PM |
R version 4.0.3 (2020-10-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
locale: LC_COLLATE=English_Canada.1252, LC_CTYPE=English_Canada.1252, LC_MONETARY=English_Canada.1252, LC_NUMERIC=C and LC_TIME=English_Canada.1252
attached base packages: stats4, parallel, grid, stats, graphics, grDevices, utils, datasets, methods and base
other attached packages: RISmed(v.2.3.0), heatmaply(v.1.2.1), ggdendro(v.0.1.22), lme4(v.1.1-27.1), Matrix(v.1.3-4), variancePartition(v.1.18.3), scales(v.1.1.1), limma(v.3.44.3), presto(v.1.0.0), data.table(v.1.14.0), Rcpp(v.1.0.7), viridis(v.0.6.2), viridisLite(v.0.4.0), cowplot(v.1.1.1), RColorBrewer(v.1.1-2), schex(v.1.2.0), shiny(v.1.6.0), SingleCellExperiment(v.1.10.1), SummarizedExperiment(v.1.18.2), DelayedArray(v.0.14.1), matrixStats(v.0.61.0), GenomicRanges(v.1.40.0), GenomeInfoDb(v.1.24.2), reactome.db(v.1.70.0), fgsea(v.1.14.0), org.Hs.eg.db(v.3.11.4), org.Mm.eg.db(v.3.11.4), AnnotationDbi(v.1.52.0), IRanges(v.2.22.2), S4Vectors(v.0.26.1), Biobase(v.2.48.0), BiocGenerics(v.0.34.0), doParallel(v.1.0.16), iterators(v.1.0.13), foreach(v.1.5.1), future(v.1.22.1), ggpmisc(v.0.4.3), ggpp(v.0.4.2), DT(v.0.19), plotly(v.4.9.4.1), reshape2(v.1.4.4), plyr(v.1.8.6), scMiko(v.0.1.0), flexdashboard(v.0.5.2), tidyr(v.1.1.3), SeuratObject(v.4.0.2), Seurat(v.4.0.4), dplyr(v.1.0.7) and ggplot2(v.3.3.5)
loaded via a namespace (and not attached): utf8(v.1.2.2), reticulate(v.1.20), tidyselect(v.1.1.1), RSQLite(v.2.2.8), htmlwidgets(v.1.5.4), TSP(v.1.1-10), BiocParallel(v.1.22.0), Rtsne(v.0.15), munsell(v.0.5.0), codetools(v.0.2-16), ica(v.1.0-2), miniUI(v.0.1.1.1), withr(v.2.4.2), colorspace(v.2.0-2), highr(v.0.9), knitr(v.1.36), ROCR(v.1.0-11), tensor(v.1.5), listenv(v.0.8.0), labeling(v.0.4.2), GenomeInfoDbData(v.1.2.3), polyclip(v.1.10-0), bit64(v.4.0.5), farver(v.2.1.0), parallelly(v.1.28.1), vctrs(v.0.3.8), generics(v.0.1.0), xfun(v.0.26), R6(v.2.5.1), seriation(v.1.3.0), concaveman(v.1.1.0), bitops(v.1.0-7), spatstat.utils(v.2.2-0), cachem(v.1.0.6), assertthat(v.0.2.1), promises(v.1.2.0.1), gtable(v.0.3.0), globals(v.0.14.0), conquer(v.1.0.2), goftest(v.1.2-2), rlang(v.0.4.11), MatrixModels(v.0.5-0), splines(v.4.0.3), lazyeval(v.0.2.2), hexbin(v.1.28.2), broom(v.0.7.9), spatstat.geom(v.2.2-2), yaml(v.2.2.1), abind(v.1.4-5), crosstalk(v.1.1.1), backports(v.1.2.1), httpuv(v.1.6.3), tools(v.4.0.3), ellipsis(v.0.3.2), gplots(v.3.1.1), spatstat.core(v.2.3-0), jquerylib(v.0.1.4), ggridges(v.0.5.3), progress(v.1.2.2), zlibbioc(v.1.34.0), purrr(v.0.3.4), RCurl(v.1.98-1.3), prettyunits(v.1.1.1), rpart(v.4.1-15), deldir(v.0.2-10), pbapply(v.1.5-0), zoo(v.1.8-9), ggrepel(v.0.9.1), cluster(v.2.1.0), colorRamps(v.2.3), fs(v.1.5.0), magrittr(v.2.0.1), scattermore(v.0.7), SparseM(v.1.81), lmtest(v.0.9-38), RANN(v.2.6.1), fitdistrplus(v.1.1-5), hms(v.1.1.1), patchwork(v.1.1.1), mime(v.0.11), evaluate(v.0.14), xtable(v.1.8-4), pbkrtest(v.0.5.1), gridExtra(v.2.3), compiler(v.4.0.3), tibble(v.3.1.4), KernSmooth(v.2.23-17), crayon(v.1.4.1), minqa(v.1.2.4), htmltools(v.0.5.2), entropy(v.1.3.0), mgcv(v.1.8-33), later(v.1.3.0), DBI(v.1.1.1), tweenr(v.1.0.2), MASS(v.7.3-53), boot(v.1.3-25), igraph(v.1.2.6), pkgconfig(v.2.0.3), registry(v.0.5-1), spatstat.sparse(v.2.0-0), bslib(v.0.3.0), webshot(v.0.5.2), XVector(v.0.28.0), stringr(v.1.4.0), digest(v.0.6.27), sctransform(v.0.3.2), RcppAnnoy(v.0.0.19), spatstat.data(v.2.1-0), rmarkdown(v.2.11), leiden(v.0.3.9), fastmatch(v.1.1-3), dendextend(v.1.15.1), uwot(v.0.1.10), gtools(v.3.9.2), quantreg(v.5.86), nloptr(v.1.2.2.2), lifecycle(v.1.0.1), nlme(v.3.1-149), jsonlite(v.1.7.2), fansi(v.0.5.0), pillar(v.1.6.4), lattice(v.0.20-41), GO.db(v.3.11.4), fastmap(v.1.1.0), httr(v.1.4.2), survival(v.3.2-13), glue(v.1.4.2), png(v.0.1-7), pander(v.0.6.4), bit(v.4.0.4), ggforce(v.0.3.3), stringi(v.1.7.4), sass(v.0.4.0), blob(v.1.2.2), caTools(v.1.18.2), memoise(v.2.0.0), irlba(v.2.3.3) and future.apply(v.1.8.1)
---
title: "Gene Expression and Association"
date: "`r format(Sys.time(), '%d %B, %Y')`"
output:
flexdashboard::flex_dashboard:
orientation: columns
vertical_layout: fill
self_contained: true
source_code: embed
theme:
bootswatch: flatly
navbar:
- { title: "scMiko", href: "https://nmikolajewicz.github.io/scMiko/" }
editor_options:
chunk_output_type: inline
knit: (function(inputFile, encoding) {
rmarkdown::render(input = inputFile,
encoding = encoding,
output_file = if (exists("user")){paste0(
xfun::sans_ext(inputFile), '_',user, "_",
paste0(format(Sys.time(), "%d_%b_"), gsub(" ", "_", gsub(":", "_", format(Sys.time(), "%X"))), format(Sys.time(), "_%Y")), '.html'
)} else {paste0(xfun::sans_ext(inputFile), '_',"Guest", "_",
paste0(format(Sys.time(), "%d_%b_"), gsub(" ", "_", gsub(":", "_", format(Sys.time(), "%X"))), format(Sys.time(), "_%Y")), '.html')},
output_dir = if (exists("data.path")) paste0(data.path, "/HTML_Reports") else NULL
)
})
---
```{r load libraries, include=FALSE}
# clear global enviroment
rm(list = setdiff(ls(), c("data.path", "user")))
invisible({gc()})
# initiate timer
start.time <- proc.time()
# load packages
packages2load <- c("scMiko", "Seurat", "plyr", "dplyr", "tidyr", "reshape2", "grid", "plotly",
"DT", "flexdashboard", "ggpmisc", "future", "foreach", "doParallel",
"AnnotationDbi", "org.Mm.eg.db", "org.Hs.eg.db", "fgsea", "ggplot2", "reactome.db",
"schex", "RColorBrewer", "cowplot", "viridis", "viridisLite", "presto", "variancePartition", "lme4", "ggdendro")
# load packages
invisible(lapply(packages2load, library, character.only = T, quietly = T))
```
```{r parameter specification}
# PARAMETER SPECIFICATION ######################################################
parameter.list <- list(
input.file = "C:/Users/Owner/Dropbox/PDF Projects - JM/Data/scRNA-seq/01_sci-RNA-seq3_Hong_Kevin_Jason/NM_HH/Data/Preprocessed_Datasets/output_33647PM_demo_manno_10000cell.Rdata",
features = NULL,
feature.format = 2, # 0 user-provided, 1 M06_features.csv, 2 discovery
feature.csv.path = "M06_features.csv", # csv spreadsheet containing features, called by column name. Required if feature.format = 1
discovery.method = "Wilcoxon", # options: Wilcoxon, CDI, Gini
discovery.pct.min = 0.05, # minimum expression fraction per group.
discovery.group.by = "seurat_clusters",
discovery.top.n = 10,
discovery.max.n = 40,
as.module = F,
# Correlation parameters #####################################################
cor.method = "cdi", # Options: 'pearson', 'spearman', 'rho_p', 'cdi'
cor.top.n = 100,
cor.which.data = "data",
cor.min.expr = 0.05, # min expressing fraction to be included in correlation
# General parameters #########################################################
general.cluster.resolution = 0.4, # Numeric [0, Inf]
general.subsample.factor = 1, # Numeric (0,1]
general.subset = "no.subset",
general.clean.clusters = T, # Logical.
general.save.pdf = F, # Logical.
general.rprofile.dir = F,
general.print.inline = F, # Logical.
general.barcode.recode = list(),
# General parameters #########################################################
expression.do.hex = F, # Logical. Specify whether to generate hex UMAPs (schex package)
n.workers = parallel::detectCores(),
developer = F
)
```
```{r assertions, include = FALSE}
# ensure all input specifications are met.
stopifnot(is.numeric(parameter.list$general.cluster.resolution))
stopifnot(parameter.list$general.cluster.resolution > 0)
stopifnot(is.numeric(parameter.list$general.subsample.factor))
stopifnot(parameter.list$general.subsample.factor > 0)
stopifnot(parameter.list$general.subsample.factor <= 1)
stopifnot(("data.frame" %in% class(parameter.list$general.subset)) || parameter.list$general.subset == "no.subset")
stopifnot(class(parameter.list$general.clean.clusters) == "logical")
stopifnot(class(parameter.list$general.save.pdf) == "logical")
stopifnot((class(parameter.list$general.barcode.recode)) == "list")
stopifnot(parameter.list$cor.method %in% c('pearson', 'spearman', 'rho_p', "cdi"))
stopifnot(is.numeric(parameter.list$cor.top.n))
stopifnot(parameter.list$cor.top.n > 0)
stopifnot(parameter.list$cor.which.data == "data")
stopifnot(class(parameter.list$expression.do.hex) == "logical")
```
```{r import appropriate csv files, include = FALSE}
if (parameter.list$feature.format==1){
gene.sets.type1 <- read.csv(parameter.list$feature.csv.path, header = TRUE, stringsAsFactors = F)
colnames(gene.sets.type1) <- rmvCSVprefix(colnames(gene.sets.type1))
}
```
```{r load data, warning = FALSE, include = FALSE}
# Specify data directories
if (parameter.list$general.rprofile.dir){
dir.preprocessed <- "Preprocessed_Datasets/"
if (!exists("data.path") & !exists("user")) {
stop("data.path and user variables do not exist in global enviroment. Ensure that these are specified in .Rprofile. If specified, try restarting Rstudio.")
}
}
miko_message("Importing data...")
if ((!grepl(".Rdata|.RData", parameter.list$input.file)) & !(grepl(".rds", parameter.list$input.file))){
parameter.list$input.file <- paste0(parameter.list$input.file, ".Rdata")
}
if (parameter.list$general.rprofile.dir){
if (grepl(".Rdata|.RData", parameter.list$input.file)){
load(paste(data.path, dir.preprocessed, parameter.list$input.file, sep = ""));
} else if (grepl(".rds", parameter.list$input.file)) {
so <- readRDS(paste(data.path, dir.preprocessed, parameter.list$input.file, sep = ""))
}
} else {
if (grepl(".Rdata|.RData", parameter.list$input.file)){
load(parameter.list$input.file);
} else if (grepl(".rds", parameter.list$input.file)) {
so <- readRDS(parameter.list$input.file);
}
}
if (!exists("gNames.list")) gNames.list <- prepGeneList(so, objects())
t2d <- c("ica", "tsne", "nmf", "corr", "gsva", "deg", "integration.anchors")
# prep seurat object
prep.list <- prepSeurat2(so, e2s = gNames.list,
species = parameter.list$general.species,
resolution= parameter.list$general.cluster.resolution,
subset.data = parameter.list$general.subset,
subsample = parameter.list$general.subsample.factor,
terms2drop = t2d, rmv.pattern = "so",
keep.default.assay.only = T)
# unpack results
if (exists("so")) try({rm(so)}, silent = T)
so.query <- prep.list$so
current.assay <- prep.list$assay
n.cells <- prep.list$n.cell
rm(prep.list)
invisible({gc()})
# clean clusters
if (parameter.list$general.clean.clusters) so.query <- cleanCluster(so.query, return.plots = F)
parameter.list$general.species <- detectSpecies(so.query)
```
```{r input subtype data specification, include = FALSE}
meta.module.helper <- function(do.module, default.set){
if (is.na(do.module)){
return(default.set)
} else if (do.module == TRUE) {
return(T)
} else if (do.module == FALSE) {
return(F)
}
}
features <- as.character(parameter.list$features)
if (parameter.list$feature.format==0){
markers_of_interest <- features
meta.module.flag <- meta.module.helper(parameter.list$as.module,FALSE)
} else if (parameter.list$feature.format==1){
stopifnot(features %in% names(gene.sets.type1))
markers_of_interest <- gene.sets.type1[[features]] # REQUIRED if feature.format == 1
meta.module.flag <- meta.module.helper( parameter.list$as.module,FALSE)
} else if ((parameter.list$feature.format==2)) {
meta.module.flag <- meta.module.helper( parameter.list$as.module,F)
features <- parameter.list$features <- c()
}
if (exists("markers_of_interest") && "data.frame" %in% class(markers_of_interest)){
markers_of_interest <- janitor::clean_names(markers_of_interest, "screaming_snake")
}
```
```{r recode barcodes, include = FALSE}
# recode barcodes ##############################################################
bc.list <- parameter.list$general.barcode.recode
df.meta <- so.query@meta.data
if (length(bc.list) == 0){
df.meta$bc <- df.meta$Barcode
} else {
df.meta$bc <- NA
for (i in 1:length(bc.list)){
df.meta$bc[grepl(bc.list[[i]], df.meta$Barcode)] <- names(bc.list)[i]
}
df.meta$bc[is.na(df.meta$bc)] <- "Other"
}
so.query@meta.data <- df.meta
```
```{r prepare query gene list (input type 1 or 2), miko_message=FALSE, warning=FALSE, include = FALSE}
importMarkers <- function(query.format, input.file = NULL, markers.of.interest = NULL, which.col = "first", which.species) {
stopifnot(which.col %in% c("first", "all"))
if (query.format == 1){
if (which.species == "Hs"){
markers.of.interest <- toupper(markers.of.interest)
} else {
markers.of.interest <- firstup(markers.of.interest)
}
marker_set_name <- ""
} else if (query.format == 2){
spreadsheet_format <- unlist(strsplit(input.file, '[.]'))[2]
if (spreadsheet_format == "csv") {
markers.of.interest <- read.csv(input.file, header = TRUE)
} else if (spreadsheet_format == "xlsx") {
markers.of.interest <- readxl::read.xlsx(input.file, header = TRUE)
}
marker_set_name <- colnames(markers.of.interest)
if (which.col == "first"){
spread_sheet_col <- 1
marker_set_name <- marker_set_name[spread_sheet_col]
markers.of.interest <- as.data.frame(as.vector(markers.of.interest[ , spread_sheet_col]))
colnames(markers.of.interest) <- marker_set_name
} else if (which.col == "all"){
marker_set_name <- ""
}
for (i in 1:dim(markers.of.interest)[2]){
if (which.species == "Hs"){
markers.of.interest[ ,i] <- toupper(as.vector(markers.of.interest[ ,i]))
} else {
markers.of.interest[ ,i] <- firstup(as.vector(markers.of.interest[ ,i]))
}
}
}
output <- list(markers.of.interest, marker_set_name)
names(output) <- c("markers.of.interest", "marker_set_name")
return(output)
}
miko_message("Preparing geneset(s)...")
# import marker sets
if (parameter.list$feature.format == 1){
output.markers <- importMarkers(query.format = parameter.list$feature.format,
markers.of.interest = markers_of_interest,
which.species = parameter.list$general.species)
} else if (parameter.list$feature.format == 0){
if (parameter.list$general.species == "Hs") {
markers_of_interest <- toupper(markers_of_interest)
} else if (parameter.list$general.species == "Mm") {
markers_of_interest <- firstup(markers_of_interest)
}
}
if (exists("output.markers")) markers_of_interest <- output.markers[[1]]
```
```{r prior log history, warning = FALSE, include = FALSE}
# get prior log history
cur.env <- objects()
module.logs <- cur.env[grep("^df.log_Module",cur.env)]
```
```{r define grouping var, warning = FALSE, include = FALSE}
grouping_var <- parameter.list$discovery.group.by
if (parameter.list$discovery.group.by == "seurat_clusters"){
group_name <- "Clusters"
} else {
group_name <- parameter.list$discovery.group.by
}
# determine unique groups
u_groups <- as.vector(unique(so.query@meta.data[[grouping_var]]))
# determine number of unique groups
n_group_members <- length(u_groups)
```
```{r analysis log, warning = FALSE, include = FALSE}
miko_message("Updating analysis logs...")
df.log <- initiateLog("Query Feature Exploration")
df.log <- addLogEntry("Query File", parameter.list$input.file, df.log, "input.file")
df.log <- addLogEntry("Gene Set Name", features, df.log, "features")
df.log <- addLogEntry("Compute geneset module score", meta.module.flag, df.log, "meta.module.flag")
df.log <- addLogEntry("Species", parameter.list$general.species, df.log, "general.species")
if ("data.frame" %in% class(parameter.list$general.subset)){
df.log <- addLogEntry("Which Subset Field", parameter.list$general.subset$field, df.log, "field")
df.log <- addLogEntry("Which Subset Groups", parameter.list$general.subset$subgroups, df.log, "subgroups")
} else if ("character" %in% class(parameter.list$general.subset)){
df.log <- addLogEntry("Which Subset Groups", parameter.list$general.subset, df.log, "subset.df")
}
df.log <- addLogEntry("Min expr. fraction for cor. analysis", parameter.list$cor.min.expr, df.log, "cor.min.expr")
df.log <- addLogEntry("Clusters cleaned", parameter.list$general.clean.clusters, df.log, "general.clean.clusters")
df.log <- addLogEntry("Cluster Resolution", parameter.list$general.cluster.resolution, df.log, "general.cluster.resolution")
df.log <- addLogEntry("Grouping Variable", group_name, df.log, "group_name")
df.log <- addLogEntry("N Groups", n_group_members, df.log, "n_group_members")
df.log <- addLogEntry("Top N correlations", parameter.list$corr.top.n, df.log, "corr.top.n")
df.log <- addLogEntry("subsample_factor", parameter.list$general.subsample.factor, df.log, "general.subsample.factor")
df.log <- addLogEntry("schex used for UMAPs", parameter.list$expression.do.hex, df.log, "expression.do.hex")
df.log <- addLogEntry("PDF saved", parameter.list$general.save.pdf, df.log, "general.save.pdf")
df.log <- addLogEntry("correlation data", parameter.list$cor.which.data , df.log, "cor.which.data")
```
```{r keep available markers, warning = FALSE, include = FALSE}
if (exists("markers_of_interest")){
if (is.character(markers_of_interest)){
which.available <- unlist(lapply(markers_of_interest, function(x){
x %in% rownames(so.query)
}))
genes.not.found <- markers_of_interest[!which.available]
try({genes.not.found <- genes.not.found[genes.not.found != ""]}, silent = T)
markers_of_interest <- unique(markers_of_interest[which.available])
markers_of_interest <- rmvCSVprefix(markers_of_interest)
if (length(markers_of_interest) == 0) stop("None of queried genes found in seurat object.")
} else if (is.data.frame(markers_of_interest)){
colnames(markers_of_interest) <- rmvCSVprefix(colnames(markers_of_interest))
}
}
```
```{r TYPE2 - prepare query gene list, warning = FALSE}
if (parameter.list$feature.format == 2){
top.n.deg <- parameter.list$discovery.top.n
max.n.deg <- parameter.list$discovery.max.n
ulg <- ulength(so.query@meta.data[ ,grouping_var])
maxpergrp <- round(max.n.deg/ulg)
if (maxpergrp < top.n.deg) top.n.deg <- maxpergrp
if (top.n.deg < 1) top.n.deg <- 1
if (toupper(parameter.list$discovery.method) == "WILCOXON"){
miko_message("Running differential gene analysis...")
deg.gene <- presto::wilcoxauc(so.query, group_by = grouping_var, seurat_assay = DefaultAssay(so.query))
deg.gene.top <- deg.gene %>%
dplyr::group_by(group) %>%
dplyr::top_n(top.n.deg, auc)
markers_of_interest <- unique(as.character(deg.gene.top$feature))
} else if (toupper(parameter.list$discovery.method) == "GINI"){
deg.gene <- findGiniMarkers(object = so.query, min.pct = parameter.list$discovery.pct.min,
group.by =grouping_var, verbose = T)
deg.gene.top <- deg.gene %>%
dplyr::group_by(group) %>%
dplyr::top_n(top.n.deg, ngini)
markers_of_interest <- unique(as.character(deg.gene.top$feature))
} else if (toupper(parameter.list$discovery.method) == "CDI"){
exprGene <- getExpressedGenes(object = so.query, min.pct = parameter.list$discovery.pct.min, group = grouping_var)
deg.gene <- findCDIMarkers(object = so.query, features.x = grouping_var, features.y = exprGene, ncell.subset = 5000,
n.workers = parameter.list$n.workers, verbose = T)
deg.gene.top <- deg.gene %>%
dplyr::group_by(feature.x) %>%
dplyr::top_n(top.n.deg, ncdi)
markers_of_interest <- unique(as.character(deg.gene.top$feature.y))
}
}
```
```{r umap by cluster, warning = FALSE, include = FALSE}
miko_message("Generating UMAP plots...")
# get GGplot handle for cluster umap
plt.umap_by_cluster <- DimPlot(so.query, reduction = "umap", group.by = "seurat_clusters", label = TRUE) +
labs(title = "UMAP", subtitle = paste0(ulength(so.query@meta.data$seurat_clusters), " clusters | ", ncol(so.query), " cells")) +
xlab("UMAP 1") + ylab("UMAP 2") + theme_miko(legend = T)
plt.umap_by_barcode <- NULL
try({
plt.umap_by_barcode <- DimPlot(so.query, reduction = "umap", group.by = "Barcode", label = TRUE) +
labs(title = "UMAP", subtitle = "Stratified by Barcodes") +
xlab("UMAP 1") + ylab("UMAP 2") + theme_miko(legend = T)
}, silent = T)
if (parameter.list$general.print.inline) {
plt.umap_by_cluster
}
```
```{r meta module , warning = FALSE}
# pool genesets if modular activity is query of interest ##########################
if(!exists("moi.df")) moi.df <- (markers_of_interest)
if (meta.module.flag == T){
miko_message("Computing modular activity...")
gNames <- gNames.list
plt.clustermarkers_by_umap <- list()
available_markers <- c()
markers_of_interest <- names(moi.df)
exp.mat.new <- NULL
all.list <- list()
for (i in 1:length(markers_of_interest)){
# get meta module name
cur.marker <- markers_of_interest[i]
# clean dataset and include only those available in seurat object
cur.features <- as.character(moi.df[,i][moi.df[,i] != ""])
cur.features <- cleanFilterGenes(cur.features, so.query, parameter.list$general.species)
if (length(cur.features) == 0) next
module.name <- cur.marker
so.query.try = NA
so.query.try <- try(AddModuleScore(so.query,
features = list(cur.features),
ctrl = 50,
name = "new.module",
nbin = 5), silent = T)
if (is.na(so.query.try)) next
# assign name to modlue score
names(so.query.try@meta.data)[names(so.query.try@meta.data) %in% paste("new.module", 1, sep = "")] <- module.name
so.query@meta.data[[module.name]] <- so.query.try@meta.data[[module.name]]
# concat scores to dataframe
cur.module.df <- as.data.frame(so.query@meta.data[[module.name]])
colnames(cur.module.df) <- module.name
exp.mat.new <- bind_cols(exp.mat.new, cur.module.df)
available_markers[i] <- module.name
all.list[[module.name]] <- cur.features
}
# get all scores and cast as matrix
exp.mat.new.mat.t <- t(as.matrix(exp.mat.new))
# concat scores to seurat objects
exp.mat.1 <-so.query@assays[[DefaultAssay(so.query)]]@data
colnames(exp.mat.new.mat.t) <- colnames(exp.mat.1)
exp.mat.1 <- rbind(exp.mat.1, exp.mat.new.mat.t)
so.query@assays[[DefaultAssay(so.query)]]@data <- exp.mat.1
markers_of_interest <- available_markers[!is.na(available_markers)]
}
if (exists("so.query.try")) rm("so.query.try")
```
```{r bin cells, warning = FALSE, include = FALSE}
if (parameter.list$expression.do.hex){
n.cells <- ncol(so.query)
cells.per.bin <- 30
if (round(n.cells/cells.per.bin) > 100){
nhexbins <- 100
} else {
round(n.cells/cells.per.bin)
}
so.query <- schex::make_hexbin(so.query, nbins = round(n.cells/cells.per.bin),
dimension_reduction = "UMAP")
}
```
```{r umap expression plots, message=FALSE, warning=FALSE, include = FALSE}
miko_message("Generating UMAP expression plots...")
suppressWarnings({
suppressMessages({
# initialize variables
plt.umap.1 <- list()
plt.umap.2 <- list()
# gNames <- gNames.list
available_markers <- c()
# check if point size adjustment is necessary
if (ncol(so.query)> 50000) {
aps <- F
pt.size <- autoPointSize(ncol(so.query))
} else {
aps <- T
pt.size <- 1
}
if (class(markers_of_interest) == "data.frame") markers_of_interest <- as.vector(markers_of_interest[,1])
if (parameter.list$discovery.group.by == "seurat_clusters") u_groups <- as.character(as.numeric(u_groups)[order(as.numeric(u_groups))])
# query_genes_by_group <- data.frame(u_groups)
input.marker.list <- markers_of_interest
clustplot <- DimPlot(so.query, reduction = "umap", pt.size = aps, group.by = grouping_var,
label = TRUE, repel = TRUE) +
ggtitle(label = "UMAP") + xlab("UMAP 1") + ylab("UMAP 2")
# plot top differentially expressed genes per cluster and compare to cluster membership
pb <- txtProgressBar(max =length(markers_of_interest), style = 3)
for (i in c(1:(length(markers_of_interest)))) {
# empty list where plts will be stored
all_plts <- list()
# highlight cluster plot
all_plts[[1]] <- clustplot
cur.marker <- markers_of_interest[i]
if (!is.na(cur.marker)){
if (parameter.list$expression.do.hex){
all_plts[[length(all_plts)+1]] <- schex::plot_hexbin_feature(so.query, feature=cur.marker,
action="mean", xlab="UMAP1", ylab="UMAP2",
title=cur.marker,
mod = DefaultAssay(so.query),
type = "data")
} else {
# only use nebulosa for single gene expression profiles.
if (meta.module.flag){
all_plts[[length(all_plts)+1]] <- FeaturePlot(
object = so.query,
features = cur.marker,
pt.size = aps
) +
theme_miko(legend = T) +
scale_color_gradient2(high = scales::muted("red"), low = scales::muted("blue")) +
labs(title = "", subtitle =cur.marker, x = "UMAP 1", y = "")
} else {
is.success.plot <- F
do.nebullosa <- F
if (do.nebullosa){
try({
all_plts[[length(all_plts)+1]] <- Nebulosa::plot_density(
object = so.query,
features = cur.marker,
slot = "data",
joint = FALSE,
reduction = "umap",
dims = c(1, 2),
method = c("ks", "wkde"),
adjust = 1,
size = pt.size,
shape = 16,
combine = TRUE,
pal = "inferno"
) +
theme_miko(legend = T) +
scale_color_gradient(low = "grey95", high = "tomato") +
labs(title = "", subtitle =cur.marker, x = "UMAP 1", y = "")
theme_miko(legend = T)
is.success.plot <- T
}, silent = T)
}
if (!is.success.plot){
all_plts[[length(all_plts)+1]] <- exprUMAP(
object = so.query,
feature = cur.marker,
size = aps
) +
theme_miko(legend = T) +
labs(title = "", subtitle =cur.marker)
}
}
}
}
if (length(all_plts) == 2){
current.ind <- length(plt.umap.1)+1
plt.umap.1[[current.ind]] <- all_plts[[1]]
plt.umap.2[[current.ind]] <- all_plts[[2]]
available_markers[length(available_markers)+1] <- markers_of_interest[i]
if (parameter.list$general.print.inline) print((CombinePlots(all_plts, ncol = length(all_plts), legend = 'none')))
}
setTxtProgressBar(pb, i)
}
close(pb)
# remove NA entries
available_markers <- available_markers[!is.na(available_markers)]
# assign names marker names to each plot
names(plt.umap.1) <- names(plt.umap.2) <- available_markers
})
})
available_markers_original_order <- available_markers
available_markers <- available_markers[order(available_markers)]
```
```{r remove genes with zero variance}
miko_message("Omitting zero variance genes...")
v.mat <- so.query@assays[[DefaultAssay(so.query)]]@data
v.mat <- v.mat[rownames(v.mat) %in% available_markers, ]
# check if all genes have variance
if( ! is(v.mat, "sparseMatrix")){
# check if values are NA
countNA = sum(is.nan(v.mat)) + sum(!is.finite(v.mat))
if( countNA > 0 ){
stop("There are ", countNA, " NA/NaN/Inf values in exprObj\nMissing data is not allowed")
}
if (is.numeric(v.mat)){
rv = var(v.mat)
} else {
rv = apply(v.mat, 1, var)
}
} else{
rv = c()
for( i in seq_len(nrow(v.mat)) ){
rv[i] = var(v.mat[i,])
}
}
if( any( rv == 0) ){
omit.which = rownames(v.mat)[which(rv == 0)]
available_markers <- available_markers[!(available_markers %in% omit.which)]
}
```
```{r single cell expression, fig.width=10, fig.height=4, warning = FALSE, include = FALSE}
# include = FALSE,
miko_message("Generating expression plots...")
# clean up
try({ rm(exp.mat); rm(exp.mat.2); rm(exp.mat.complete) }, silent = T)
e.mat <- exp.mat.complete <- so.query@assays[[DefaultAssay(so.query)]]@data
e.mat.log <- log1p(e.mat)
rm(e.mat); invisible({gc()})
f.mat.clust <- avgGroupExpression(
so = so.query,
which.features = available_markers,
which.data = "data",
which.center = "fraction",
which.group = "seurat_clusters"
)
try({rownames(f.mat.clust) <- rownames(e.mat.log)}, silent = T)
invisible({gc()})
f.mat.bc <- avgGroupExpression(
so = so.query,
which.features = available_markers,
which.data = "data",
which.center = "fraction",
which.group = "bc"
)
try({rownames(f.mat.bc) <- rownames(e.mat.log)}, silent = T)
ubcl <- tryCatch(ulength(so.query@meta.data$bc), error = function(e) return(1))
plt.sgExp.all <- pbapply::pblapply(1:length(available_markers), function(x){
i <- x[[1]]
font.size <- 20
plt.sgExp.clust <- expression.Plot(so = so.query, e.mat = e.mat.log, f.mat = f.mat.clust,
show.full.axis = F, show.violin = F, font.size = font.size,
which.gene = available_markers[i], which.group = "seurat_clusters",
which.data = "data", x.label = "Cluster", verbose = F)
is.success <- F
if (ubcl > 1){
try({
plt.sgExp.barcode <- expression.Plot(so = so.query, e.mat = e.mat.log, f.mat = f.mat.bc,
show.full.axis = F, show.violin = F, font.size = font.size,
which.gene = available_markers[i], which.group = "bc", which.data = "data",
x.label = "Sample", x.label.angle = 25, verbose = F) +
labs(title = "", subtitle = "Samples",
caption = "violin = normalized expression\ndot = expression mean\nbar = expressin fraction")
is.success <- T
})
}
if (is.success){
plt.sgExp <- cowplot::plot_grid(plotlist = list(plt.sgExp.clust, plt.sgExp.barcode), ncol = 2)
} else {
plt.sgExp <-plt.sgExp.clust
}
return(plt.sgExp)
})
names(plt.sgExp.all) <- available_markers
```
```{r gene-gene associations,warning=FALSE}
miko_message("Computing feature associations...")
which.data <- parameter.list$cor.which.data
stopifnot(which.data %in% c("data", "scale"))
if (which.data == "data"){
query.cor <- "similarity.data"
} else if (which.data == "scale"){
query.cor <- "similarity.scale"
}
compute.cor <- T
# compute correlation matrix
if (compute.cor) {
# entire matrix
exp.mat.complete <- getExpressionMatrix(so.query, which.data = which.data)
# filter matrix to include expressed and query features
is.exp <- exp.mat.complete > 0
p.exp <- rowMeans(is.exp)
which.keep <- rownames(exp.mat.complete)[which(p.exp > parameter.list$cor.min.expr)]
which.keep2 <- rownames(exp.mat.complete)[rownames(exp.mat.complete) %in% available_markers]
exp.mat <- exp.mat.complete[rownames(exp.mat.complete) %in% unique(c(which.keep, which.keep2)), ]
# ensure no negative values (necessary for proportionality association metrics)
if ((min(exp.mat.complete) < 0) & (parameter.list$cor.method == "rho_p")) {
exp.mat <- exp.mat + abs(min(exp.mat.complete))
exp.mat.complete <- exp.mat.complete + abs(min(exp.mat.complete))
}
df.cor.list <- NULL
query.cor.list <- list()
which.missing <- c()
if (which.data == "data"){
t.exp.mat <- scMiko::sparse2dense(exp.mat, block.size = 10000, transpose = T)
} else {
t.exp.mat <- t(exp.mat)
}
# calculate feature associations
# rho proportionality constant ###############################################
if (tolower(parameter.list$cor.method) == "rho_p"){
query.cor.object <- propr::perb(t.exp.mat, select = colnames(t.exp.mat))
query.cor.mat <- query.cor.object@matrix
# spearman correlation coefficient ############################################
} else if (tolower(parameter.list$cor.method) == "spearman"){
exp.map.av <- t.exp.mat[ , toupper(colnames(t.exp.mat)) %in% toupper(available_markers)]
query.cor.mat <- cor(t.exp.mat, exp.map.av, method = "spearman")
# pearson correlation coefficient ############################################
} else if (tolower(parameter.list$cor.method) == "pearson"){
exp.map.av <- t.exp.mat[ , colnames(t.exp.mat) %in% available_markers]
query.cor.mat <- cor(t.exp.mat, exp.map.av)
# co-dependency index ########################################################
} else if (tolower(parameter.list$cor.method) == "cdi"){
exprGene <- tryCatch({getExpressedGenes(object = so.query, min.pct = parameter.list$cor.min.expr, group = "seurat_clusters")},
error = function(e){
return(getExpressedGenes(object = so.query, min.pct = parameter.list$cor.min.expr, group = NA))
})
cdi.df.all <- findCDIMarkers(object = so.query, features.x = available_markers,
features.y = exprGene, n.workers = parameter.list$n.workers, verbose = T)
cdi.df<- cdi.df.all %>% dplyr::select(c("feature.x", "feature.y", "ncdi"))
query.cor.mat <- pivot_wider(data = cdi.df, names_from = "feature.x", values_from = "ncdi")
query.cor.mat <- col2rowname(query.cor.mat, "feature.y")
query.cor.mat[is.na(query.cor.mat)] <- 0
}
}
# handle single-feature query
if ((dim(query.cor.mat)[2] == 1) & length(available_markers) == 1) colnames(query.cor.mat) <- available_markers
# clean up matrix
query.cor.mat.all <- query.cor.mat[,colnames(query.cor.mat) %in% available_markers]
if (!is.null(dim(query.cor.mat.all)) && ncol(query.cor.mat.all) == 0) stop("Correlation matrix is missing query features.")
# assign results
if (class(query.cor.mat.all) != "data.frame"){
df.cor.list <- as.data.frame(query.cor.mat.all)
} else {
df.cor.list <- query.cor.mat.all
}
if (ncol(df.cor.list) == 1) {
df.cor.list$genes<- rownames(query.cor.mat)
colnames(df.cor.list)[1] <- available_markers[1]
} else {
df.cor.list$genes <- rownames(df.cor.list)
}
if (!("genes" %in% colnames(df.cor.list))) df.cor.list$genes <- rownames(df.cor.list)
which.available.markers <- available_markers[available_markers %in% colnames(df.cor.list)]
df.cor.list <- df.cor.list[ ,c("genes", which.available.markers)]
# set auto-correlations to NA
for (i in 1:ncol(df.cor.list)){
if (colnames(df.cor.list)[i] == "genes") next
current.gene <- colnames(df.cor.list)[i]
which.match <- df.cor.list$genes %in% colnames(df.cor.list)[i]
df.cor.list[which.match,current.gene] <- NA
}
```
```{r prep genes for enrichment, warning = FALSE}
miko_message("Preparing gene associations for pathway enrichment...")
if (!is.null(df.cor.list)) {
df.cor.list.genes <- df.cor.list$genes
df.cor.list.cor <- df.cor.list %>% dplyr::select(-c("genes"))
mat.cor.list.cor <- as.matrix(df.cor.list.cor)
mat.cor.list.cor <- signif(mat.cor.list.cor, 4)
df.cor.list <- bind_cols(data.frame(genes = df.cor.list.genes), as.data.frame(mat.cor.list.cor))
df2enrich <- as.data.frame(df.cor.list)
} else {
df2enrich <- NULL
}
# ensure no duplicate exist
if (!is.null(df2enrich)){
df2enrich <- df2enrich[!duplicated(df2enrich$genes), ]
}
```
```{r cormat heatmap, warning = FALSE}
if (exists("df.cor.list")) {
miko_message("Similarity heatmap...")
df.cor.list.mat <- df.cor.list
df.cor.list.mat <- df.cor.list.mat[!duplicated(df.cor.list.mat$genes), ]
rownames(df.cor.list.mat) <- df.cor.list.mat$genes
df.cor.list.mat <- dplyr::select(df.cor.list.mat, -c("genes"))
cor.mat <- as.matrix(df.cor.list.mat)
top.n.cor <- parameter.list$cor.top.n
n.per.query <- ceiling(0.5*top.n.cor/ncol(cor.mat))
filter.cor <- T
if (filter.cor){
cor.mat.df <- as.data.frame(cor.mat)
top.cor <- unique(as.vector(unlist(apply(cor.mat.df, 2, function(x) {
c(rownames(cor.mat)[order(-x)][1:n.per.query], rownames(cor.mat)[order(x)][1:n.per.query])
}))))
cor.mat.sub <- cor.mat[rownames(cor.mat) %in% top.cor, ]
if (class(cor.mat.sub) == "numeric"){
names(cor.mat.sub) <- rownames(cor.mat)[rownames(cor.mat) %in% top.cor]
} else {
rownames(cor.mat.sub) <- rownames(cor.mat)[rownames(cor.mat) %in% top.cor]
}
} else {
cor.mat.sub <- cor.mat
}
}
```
```{r create cor heatmap, include= F}
# fitered correlation matrix
if ((class(cor.mat.sub) == "matrix") && (dim(cor.mat.sub)[2] > 0)) {
cor.mat.sub <- cor.mat.sub[ ,!(is.na(apply(cor.mat.sub, 2, function(x) var(x, na.rm = T))))]
library("heatmaply")
plt.heat <- heatmaply(cor.mat.sub, scale_fill_gradient_fun = scale_fill_miko(), main = "Feature Association Matrix",
xlab = "Query Feature(s)", ylab = "Associated Feature(s)",
key.title = parameter.list$cor.method)
if (parameter.list$general.print.inline) {
plt.heat
# plt.heat2
}
} else {
plt.heat <- NULL
}
```
```{r ranked correlations, fig.height=13, fig.width=10, include = FALSE}
if (tolower(parameter.list$cor.method) == "rho_p") {
fill.label <- "Proportionality Metric"
} else if (tolower(parameter.list$cor.method) == "spearman") {
fill.label <- "Spearman R"
} else if (tolower(parameter.list$cor.method) == "pearson") {
fill.label <- "Pearson R"
} else if (tolower(parameter.list$cor.method) == "cdi"){
fill.label <- "Codependency Index"
}
font.size <- 20
cor.list <- list()
pb <- txtProgressBar(max =length(available_markers), style = 3)
genelist <- list()
df.cor.sig <- NULL
for (i in 1:length(available_markers)){
# all correlations
df.cor.all <- data.frame(genes = rownames(cor.mat), r = as.vector(cor.mat[ ,colnames(cor.mat) %in% available_markers[i]]))
colnames(df.cor.all) <- c("genes", "r")
df.cor.all <- df.cor.all[df.cor.all$genes != available_markers[i], ]
# identify significant correlations
fdr.thresh <- 0.001
if (tolower(parameter.list$cor.method) != "cdi"){
cor.fdr <- fdrtool::fdrtool(x = df.cor.all$r, statistic=c("correlation"),
plot=F, color.figure=F, verbose=F,
cutoff.method=c("fndr"),
pct0=0.75)
df.cor.all$fdr <- cor.fdr[["lfdr"]]
} else {
cdi.df.cur <- cdi.df.all %>% dplyr::filter(feature.x %in% available_markers[i])
cdi.df.cur$genes <- cdi.df.cur$feature.y
df.cor.all <- merge(df.cor.all, cdi.df.cur, by = "genes")
}
df.cor.all$sig <- (df.cor.all$fdr < fdr.thresh) & (df.cor.all$r > 0)
# get significant genes
df.cor.all2 <- df.cor.all %>% dplyr::arrange(-r)
ass.genes <- df.cor.all2$genes[df.cor.all2$sig]
df.cor.sig <- bind_rows(df.cor.sig,
data.frame(
GENE = available_markers[i],
N.ASSOCIATIONS = sum( df.cor.all$sig),
ASSOCIATED.GENES = paste(ass.genes, collapse = ", ")
))
sig.threshold <- min(df.cor.all$r[df.cor.all$sig], na.rm = T)
genelist[[available_markers[i]]] <- df.cor.all$genes[df.cor.all$sig]
# plt.heat
plt.cor.dist <- df.cor.all %>%
ggplot(aes(x = r)) +
geom_density(fill = "grey") +
geom_vline(xintercept = sig.threshold, linetype = "dashed", color = "tomato") +
ylab("Density") +
xlab(fill.label) +
theme_classic() +
geom_vline(xintercept = 0, linetype = "dashed") +
labs(title = "Feature Associations",
subtitle = paste0(sum(df.cor.all$sig)," " ,available_markers[i], "-associated features (FDR < ", fdr.thresh, ")") ) +
theme(axis.text.y = element_blank()) +
theme(plot.title = element_text(hjust = 0.5), plot.subtitle = element_text(hjust = 0.5)) +
theme(text = element_text(size=font.size),
plot.subtitle = element_text(size=15))
# get top genes to visualize
show.top.n <- 35
if (tolower(parameter.list$cor.method) != "cdi"){
show.top.n <- round(show.top.n/2)
gene.up <- (df2enrich %>% dplyr::arrange(get(available_markers[i])))[1:show.top.n,"genes"]
gene.down <- (df2enrich %>% dplyr::arrange(-get(available_markers[i])))[1:show.top.n ,"genes"]
r.up <- (df2enrich %>% dplyr::arrange(get(available_markers[i])))[1:show.top.n,available_markers[i]]
r.down <- (df2enrich %>% dplyr::arrange(-get(available_markers[i])))[1:show.top.n ,available_markers[i]]
df.cor.sub <- data.frame(genes = c(gene.up, gene.down), r = c(r.up, r.down))
} else {
gene.down <- (df2enrich %>% dplyr::arrange(-get(available_markers[i])))[1:show.top.n ,"genes"]
r.down <- (df2enrich %>% dplyr::arrange(-get(available_markers[i])))[1:show.top.n ,available_markers[i]]
df.cor.sub <- data.frame(genes = c(gene.down), r = c(r.down))
}
colnames(df.cor.sub) <- c("genes", "r")
df.cor.sub <- df.cor.sub[!(df.cor.sub$genes %in% available_markers[i]), ]
plt.ranked.cor.sub <- df.cor.sub %>%
ggplot(aes(x = reorder(genes, r), y = r)) +
geom_bar(stat = "identity") +
coord_flip() +
xlab("Features") +
geom_hline(yintercept = sig.threshold, linetype = "dashed", color = "tomato") +
ylab(fill.label) +
theme_classic() +
labs( subtitle = "Top Associations") +
theme(text = element_text(size=font.size))
cor.list[[available_markers[i]]] <- cowplot::plot_grid(plt.cor.dist, plt.ranked.cor.sub, ncol = 1, rel_heights = c(1,4.5), align = "hv")
if (parameter.list$general.print.inline){
print( cor.list[[available_markers[i]]])
}
setTxtProgressBar(pb, i)
}
close(pb)
```
```{r HG enrichment}
which.enrichment <- "hg" # option = hg, gsea
if (which.enrichment == "hg"){
exprGene <- tryCatch({getExpressedGenes(object = so.query, min.pct = 0.01, group = "seurat_clusters")},
error = function(e){return(getExpressedGenes(object = so.query, min.pct = 0.001, group = NA))})
exprGene <- unique(c(exprGene, unlist(genelist)))
miko_message("Running pathway enrichments...", verbose = T)
miko_message("\tGO Biological Processes...", verbose = T, time = F)
suppressMessages({
suppressWarnings({
bp.res <- runHG(genelist, gene.universe = exprGene,
species = detectSpecies(so.query), pathway.db = "GO", go.ontology = "BP", verbose = F)
})
})
miko_message("\tGO Molecular Functions...", verbose = T, time = F)
suppressMessages({
suppressWarnings({
mf.res <- runHG(genelist, gene.universe = exprGene,
species = detectSpecies(so.query), pathway.db = "GO", go.ontology = "MF", verbose = F)
})
})
miko_message("\tGO Cellular Compartments...", verbose = T, time = F)
suppressMessages({
suppressWarnings({
cc.res <- runHG(genelist, gene.universe = exprGene,
species = detectSpecies(so.query), pathway.db = "GO", go.ontology = "CC", verbose = F) })
})
path.font.size <- 16
bp.sum <- summarizeHG(bp.res, show.n = 5, pathway.name.size = path.font.size)
mf.sum <- summarizeHG(mf.res, show.n = 5, pathway.name.size = path.font.size)
cc.sum <- summarizeHG(cc.res, show.n = 5, pathway.name.size = path.font.size)
# consolidate plots
miko_message("Consolidating enrichment plots...", verbose = T)
plt.enrich <- pbapply::pblapply(names(genelist), function(x){
y = (x[[1]])
font.size <- 20
cowplot::plot_grid(bp.sum$plots[[y]] +
labs(title = "Biological Processes", subtitle = NULL) +
theme(text = element_text(size=font.size)),
mf.sum$plots[[y]] +
labs(title = "Molecular Functions", subtitle = NULL) +
theme(text = element_text(size=font.size)),
cc.sum$plots[[y]] +
labs(title = "Cellular Components", subtitle = NULL) +
theme(text = element_text(size=font.size)), ncol = 1)
# print(y)
})
names(plt.enrich) <- names(genelist)
}
```
```{r combine expression plots v2, fig.height=15, fig.width=30}
miko_message("Consolidating results into summary report...")
dash.list <- pbapply::pblapply(1:length(available_markers), function(x){
i <- x[[1]]
check.1 <- available_markers[i] %in% names(plt.umap.1)
check.2 <- available_markers[i] %in% names(plt.umap.2)
check.3 <- available_markers[i] %in% names(plt.sgExp.all)
check.4 <- available_markers[i] %in% names(cor.list)
# get component plots
if (!(check.1 & check.2 & check.3 & check.4)) return(NULL)
# specify function for combining plots
combo.function <- cowplot::plot_grid
font.size <- 20
p1 <- plt.umap.1[[available_markers[i]]] +
theme_miko(legend = F) + labs(caption = "UMAP", subtitle = "Clusters", title = NULL) +
theme_void() + theme(legend.position = "none") +
theme(plot.subtitle = element_text(hjust = 0.5)) +
theme(text = element_text(size=font.size))
p2 <- plt.umap.2[[available_markers[i]]]+
theme_miko(legend = F) + labs(title = NULL, subtitle = paste0("Expression")) +
theme_void() + labs(color = "Expr.") + theme(legend.position = "bottom") +
theme(plot.subtitle = element_text(hjust = 0.5)) +
theme(text = element_text(size=font.size))
class(p1) <- class(p2) <- c("gg", "ggplot")
top.lq <- combo.function(p1, p2,
labels = c("A", "B"),
align = "h", axis = "tb",
ncol = 2, nrow = 1, rel_widths = c(2,2) , label_size = 25#, "C" , 0.5 , labels = c("A", "B", "C")
)
low.lq <- plt.sgExp.all[[available_markers[i]]] +
theme(text = element_text(size=font.size))
lq <- combo.function( top.lq, low.lq, ncol = 1, rel_heights = c(2,2), labels = c("", "C"), label_size = 25)
mc <- combo.function(cor.list[[available_markers[i]]],
plt.enrich[[available_markers[i]]] , ncol = 2, rel_widths = c(1,1),
labels = c("D", "E"), label_size = 25)
mq <- combo.function(lq, mc, rel_widths = c( 3,3),
ncol = 2)
return(mq)
})
names(dash.list) <- available_markers
if (parameter.list$general.print.inline){
dash.list
# dash.list$POU5F1
}
#
```
```{r cluster-wise expression data}
# cluster information
cluster.membership <- so.query@meta.data[[grouping_var]]
u.clusters <- unique(as.numeric(as.character((cluster.membership))))
u.clusters <- u.clusters[order(u.clusters)]
# aggregate expression matrix
if (exists("exp.mat")){
exp.mat.scale <- exp.mat
} else {
exp.mat.scale <- exp.mat.complete[rownames(exp.mat.complete) %in% available_markers, ]
}
gene.scale.name <- rownames(exp.mat.scale)
cell.scale.name <- colnames(exp.mat.scale)
# percentage expressed (observed)
per.dot.score <- DotPlot(so.query, features = available_markers, group.by = grouping_var)[["data"]]
per.dot.score$genes <- per.dot.score$features.plot
per.dot.score$id <- as.numeric(as.character( per.dot.score$id))
per.dot.score.sub <- per.dot.score[ ,c("id", "avg.exp.scaled", "genes")]
colnames(per.dot.score.sub) <- c("cluster", "expression", "genes")
per.dot.score.wide <- pivot_wider(per.dot.score.sub, names_from = "cluster", values_from = "expression")
gene.names.row <- per.dot.score.wide$genes
per.dot.score.wide <- dplyr::select(per.dot.score.wide, -c("genes"))
per.dot.score.wide <- per.dot.score.wide[ ,as.character(u.clusters)]
rownames(per.dot.score.wide) <- gene.names.row
# cast expression data as matrix
exp.mat.scale.processed <- as.matrix(per.dot.score.wide)
exp.mat.av <- exp.mat.scale.processed[rownames(exp.mat.scale.processed) %in% available_markers, ]
if (!is.null(dim(exp.mat.av))) exp.mat.av <- exp.mat.av[complete.cases(exp.mat.av), ]
```
```{r create exp heatmap object , include= F}
# clust.success <- F
if (class(exp.mat.av) == "matrix") {
try({
plt.heat.availableGenes <- heatmaply::heatmaply(x = t(exp.mat.av),
main = "Feature Expression",
key.title = "Average\nScaled\nExpression",
xlab = "Features",
ylab = group_name,
scale_fill_gradient_fun = scale_fill_miko())
}, silent = T)
}
gene.order.av <- rownames(exp.mat.scale.processed)[rownames(exp.mat.scale.processed) %in% available_markers]
cluster.order.av <- colnames(exp.mat.scale.processed)
try({
if (all(plt.heat.availableGenes[["x"]][["layout"]][["xaxis"]][["ticktext"]] %in% gene.order.av)){
gene.order.av <- plt.heat.availableGenes[["x"]][["layout"]][["xaxis"]][["ticktext"]]
}
if (all(plt.heat.availableGenes[["x"]][["layout"]][["yaxis2"]][["ticktext"]] %in% cluster.order.av)){
cluster.order.av <-plt.heat.availableGenes[["x"]][["layout"]][["yaxis2"]][["ticktext"]]
}
}, silent = T)
if (!exists("plt.heat.availableGenes")) plt.heat.availableGenes <- NULL
# }
if (parameter.list$general.print.inline){
plt.heat.availableGenes
}
```
```{r get dot size helper function}
get.dot.size <- function(gene.list){
n.genes <- length(gene.list)
if (n.genes < 11) xlab.size <- 15
if (n.genes > 10) xlab.size <- 12
if (n.genes > 40) xlab.size <- 10
if (n.genes > 50) xlab.size <- 9
return(xlab.size)
}
```
```{r create dot plots, fig.width = 8, fig.height = 10}
# dot plot
# order clusters according to hierarchial clustering
if (exists("cluster.order.av")){
so.query@meta.data[[grouping_var]] <- factor(so.query@meta.data[[grouping_var]],
levels=cluster.order.av)
}
plt.dot.list <- list()
if (!(exists("gene.order.av"))) gene.order.av <- available_markers_original_order
# scale label sizes accordingly
xlab.size <- get.dot.size(gene.order.av)
# create dotplo
plt.dot.list[["Dot.All"]] <- DotPlot(so.query, features = factor(gene.order.av, levels = gene.order.av),
group.by = grouping_var,
dot.scale = 8,
cols="RdBu" ) +
labs(title = "Feature Expression", fill = "Scaled\nExpression", color = "Scaled\nExpression",
size = "Percent\nExpressed", y = group_name) +
RotatedAxis() +
theme(axis.text.x=element_text(size=xlab.size, angle = 75)) +
scale_fill_miko() +
scale_color_miko()
plt.dot.list[["Dot.All"]] <- ggplotly(
p = plt.dot.list[["Dot.All"]]
)
if (parameter.list$general.print.inline) {
print( plt.dot.list[["Dot.All"]])
}
```
```{r get public gene annotations}
df.annotation_clean <- NULL
try({
citation.result <- citationCheck(gene.query = available_markers)
df.citation <- citation.result[["df.pubmed"]]
colnames(df.citation) <- c("GENE", "N.CITATIONS")
if (parameter.list$general.species %in% "Hs"){
library(org.Hs.eg.db)
df.annotation <- AnnotationDbi::select(org.Hs.eg.db, keys = available_markers,columns = unique(c("GENENAME", "ALIAS", "ENSEMBL", "ENTREZID", "UNIPROT", "GO")), keytype = 'SYMBOL')
} else if (parameter.list$general.species %in% "Mm"){
library(org.Mm.eg.db)
df.annotation <- AnnotationDbi::select(org.Mm.eg.db, keys = available_markers,columns = unique(c("GENENAME", "ALIAS", "ENSEMBL", "ENTREZID", "UNIPROT", "GO")), keytype = 'SYMBOL')
}
# get GO annotations
annots <- AnnotationDbi::select(GO.db::GO.db, keys=unique(df.annotation$GO), columns=c("GOID", "TERM", "ONTOLOGY"), keytype="GOID")
annots$label = paste0(annots$GOID, "_", annots$ONTOLOGY, "_", annots$TERM)
# getAnnotationPathways()
# df.cor.sig
for (i in 1:length(available_markers)){
df.current_annotation <- df.annotation %>% dplyr::filter(SYMBOL %in% available_markers[i])
u.symbol <- unique(df.current_annotation$SYMBOL)
u.genename <- unique(df.current_annotation$GENENAME)
u.alias <- unique(df.current_annotation$ALIAS)
u.ensembl <- unique(df.current_annotation$ENSEMBL)
u.entrez <- unique(df.current_annotation$ENTREZID)
u.uniprot <- unique(df.current_annotation$UNIPROT)
u.go <- unique(df.current_annotation$GO)
u.evidence <- unique(df.current_annotation$EVIDENCE)
u.ontology <- unique(df.current_annotation$ONTOLOGY)
u.uniprot <- u.uniprot[!is.na(u.uniprot)]
if (length(u.uniprot) > 0){
uniprot_link <- paste0("https://uniprot.org/uniprot/", u.uniprot)
} else {
uniprot_link <- NA
}
u.ensembl <- u.ensembl[!is.na(u.ensembl)]
if (length(u.ensembl) > 0){
if (parameter.list$general.species %in% "Hs"){
ensembl_link <- paste0("https://useast.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=", u.ensembl)
} else if (parameter.list$general.species %in% "Mm"){
ensembl_link <- paste0("https://useast.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=", u.ensembl)
}
} else {
ensembl_link <- NA
}
u.symbol <- u.symbol[!is.na(u.symbol)]
if (length(u.symbol) > 0){
symbol_link <- paste0("https://www.genecards.org/cgi-bin/carddisp.pl?gene=", u.symbol)
} else {
next
}
# go terms
go_current <- unique(annots$TERM[annots$GOID %in% u.go])
go_current <- go_current[!is.na(go_current)]
go_current <- paste(go_current, collapse = ", ")
if (length(go_current) == 0){
go_current <- NA
}
df.annotation_clean <- bind_rows(df.annotation_clean,
data.frame(
GENE = u.symbol,
SYMBOL = paste(paste0('',u.symbol,''), collapse = ", "),
GENENAME = paste(u.genename, collapse = ", "),
ALIAS = paste(u.alias, collapse = ", "),
ENSEMBL = paste(paste0('',u.ensembl,''), collapse = ", "),
UNIPROT = paste(paste0('',u.uniprot,''), collapse = ", "),
GO = go_current
))
}
df.annotation_clean <- merge(df.annotation_clean, df.citation, by = "GENE", all = T)
df.annotation_clean <- merge(df.annotation_clean, df.cor.sig, by = "GENE", all = T)
df.annotation_clean <- df.annotation_clean %>% dplyr::select(-c("GENE"))
}, silent = T)
dt.ann <- datatable(data = df.annotation_clean,
filter = 'top',
extensions = 'Buttons',
options = list(pageLength = 50,
dom = 'Bfrtip',
autoWidth = TRUE,
scrollX = TRUE,
columnDefs = list(list(visible=FALSE, targets=c(3, 6, 9))),
buttons = c(I('colvis'), 'copy', 'csv', 'pdf')),
escape = colnames(df.annotation_clean)[!(colnames(df.annotation_clean) %in% c("SYMBOL", "UNIPROT", "ENSEMBL"))])
if (parameter.list$general.print.inline){
dt.ann
}
```
```{r central log}
# update central log
if (parameter.list$developer){
run.id <- NULL
if (!exists("user")) user <- "guest"
clog.update.success <- F
try({
run.id <- updateCentralLog(Module = "M06", input.data = input.file, input.subset = NA, pdf.flag = parameter.list$general.save.pdf)
clog.update.success <- T
}, silent = F)
if (is.null(run.id)) {
warning("Central log update was unsuccessful :(\n")
run.id <- paste("M06_", user, "_r", paste0(format(Sys.time(), '%s')), sep = "", collapse = "")
}
} else {
run.id <- paste("output_", gsub(":| ", "", paste0(format(Sys.time(), '%X'))), sep = "", collapse = "")
}
```
```{r setup output directories}
# output path
if (!exists("data.path")) data.path = ""
output.path <- paste0(data.path, "Module_Outputs/", paste0(run.id,"_",format(Sys.time(), '%d%m%y'), "/"))
# create output directories
if (parameter.list$general.save.pdf) {
dir.create(output.path)
dir.create(paste0(output.path, "Tables/"))
dir.create(paste0(output.path, "PDF/"))
}
```
Overview
=====================================
Sidebar {.sidebar data-width=300}
-------------------------------------
For details on the **Gene Expression and Association** scPipeline module, see [documentation](https://nmikolajewicz.github.io/scMiko/articles/scPipeline_module_overview.html).\
---
**Description**: Overview of scRNA-seq sample and queried genes.
---
**Sample Overview**. UMAP representation of scRNA-seq sample.
**Query gene information table**. View additional columns using *Column visibility* button.\
---
**Definitions:**\
**SYMBOL**: gene symbol, [Genecards](https://www.genecards.org/) linked.\
**GENENAME**: full gene name\
**ALIAS**: synonyms and alternative names\
**ENSEMBL**: [ENSEMBL](https://useast.ensembl.org/index.html) identifiers\
**UNIPROT**: [Uniprot](https://www.uniprot.org/) identifiers\
**GO**: [Gene ontology](http://geneontology.org/) (GO) terms associated with query gene. *These are not the same GO terms that are enriched and summarized in the Results tab*.\
**N.CITATIONS**: Number of [MEDLINE](https://pubmed.ncbi.nlm.nih.gov/) publications citing gene.\
**N.ASSOCIATIONS**: Number of genes significantly associated with query gene (FDR < 0.001).\
**ASSOCIATED.GENES**: list of genes significantly associated with query gene (FDR < 0.001).\
---
**Statistics**:\
Genes evaluated, n: `r length(available_markers)`\
Cells, n: `r ncol(so.query)`\
Genes, n: `r nrow(so.query)`\
Variable genes, n: `r length(VariableFeatures(so.query))`\
UMI/cell, median: `r round(median(so.query@meta.data[["nCount_RNA"]]))`\
genes/cell, median: `r round(median(so.query@meta.data[["nFeature_RNA"]]))`\
Species: `r parameter.list$species`
---
Column {data-width=350}
-------------------------------------
### Sample Overview
```{r plt.umap_by_c, fig.width=5.2, fig.height=5}
plt.umap_by_cluster <- plt.umap_by_cluster + theme(legend.position = "none")
print(plt.umap_by_cluster)
savePDF(file.name = paste0(output.path, "PDF/", "M06_umap_cluster.pdf"), plot.handle = plt.umap_by_cluster,
fig.width = 7, fig.height = 5, save.flag = parameter.list$general.save.pdf)
```
Column {data-width=650}
-------------------------------------
### Query Gene Information
```{r}
dt.ann
```
```{r plt.umap_by_b}
# TODO
# try({
# savePDF(file.name = paste0(output.path, "PDF/", "M06_umap_barcode.pdf"), plot.handle = plt.umap_by_barcode,
# fig.width = 7, fig.height = 5, save.flag = parameter.list$general.save.pdf)
# }, silent =T)
#
#
# if (("Barcode") %in% colnames(so.query@meta.data)){
# if (ulength(so.query@meta.data$Barcode) > 1){
# do.bc <- T
# } else {
# do.bc <- F
# }
# }
#
# a1 <- knitr::knit_expand(text = sprintf("### %s\n", "Barcodes")) # tab header
# a2 <- knitr::knit_expand(text = sprintf("\n```{r %s}",
# paste("plt.umap_by_b", 1, sep = "")))
# a3 <- knitr::knit_expand(text = sprintf("\n %s", "print(plt.umap_by_barcode)"))
# a4 <- knitr::knit_expand(text = "\n```\n") # end r chunk
# a1.chunk <- paste(a1, a2, a3, a4, collapse = '\n')
#
# `r if (do.bc){paste(knitr::knit(text = paste(a1.chunk, collapse = '\n')))}`
```
Expression
=====================================
Sidebar {.sidebar}
-------------------------------------
---
**Description**: Feature/gene expression analysis.\
---
Expression visualized using **dotplot** and **heatmap**.\
Data are group-averaged expression values, scaled by feature (column-wise).\
---
Row {.tabset}
-------------------------------------
### Expression Dotplot
```{r dot plot}
try({
plt.dot.list[["Dot.All"]]
}, silent = T)
```
```{r pdf dotplots,include = FALSE}
for (i in 1:length(plt.dot.list)){
plot.name <- paste0("M06_expression_dotplot_", names(plt.dot.list)[i] ,".pdf")
savePDF(file.name = paste0(output.path, "PDF/", plot.name),
plot.handle = plt.dot.list[[i]],
fig.width = 20, fig.height = 20, save.flag = parameter.list$general.save.pdf)
}
```
### Expression Heatmap
```{r expr map}
if (!is.null(plt.heat.availableGenes)) {
savePDF(file.name = paste0(output.path, "PDF/", "M06_expression_heatmap.pdf"), plot.handle = plt.heat.availableGenes,
fig.width = 20, fig.height = 20, save.flag = parameter.list$general.save.pdf)
}
try({
plt.heat.availableGenes
}, silent = T)
```
Results
=====================================
Sidebar {.sidebar}
-------------------------------------
---
**Description**: Feature summary reports, including expression, associations, and functional annotations.
---
**Figure Legends**:\
**A|** UMAP representation of cell clusters.\
**B|** Feature expression overlaid on UMAP.\
**C|** Expression plots. Groups were hierarchially-clustered using normalized expression, expressing fraction and expression variance. *Barplots*: expressing fraction, *dots*: normalized expression. \
**D|** Feature association distribution (*top*) and rankings (*bottom*).*Dashed red line*: Significance threshold. \
**E|** GO enrichment of significant feature-associations. *Dashed vertical line*: 5% FDR threshold.
---
Row {.tabset}
-------------------------------------
```{r dash, fig.width=30, fig.height=12}
try({
out <- lapply(seq_along(dash.list), function(i) {
a1 <- knitr::knit_expand(text = sprintf("### %s\n", names(dash.list)[i])) # tab header
a2 <- knitr::knit_expand(text = sprintf("\n```{r %s, fig.width=30, fig.height=15}",
paste(i, "dash"))) #, fig.width=50, fig.height=30
a3 <- knitr::knit_expand(text = sprintf("\nplot(dash.list[[%d]])", i))
a4 <- knitr::knit_expand(text = "\n```\n") # end r chunk
paste(a1, a2, a3, a4, collapse = '\n') # collapse together all lines with newline separator
})
}, silent = T)
```
`r paste(knitr::knit(text = paste(out, collapse = '\n')))`
```{r pdf dash,include = FALSE}
for (i in 1:length(dash.list)){
plot.name <- paste0("M06_summary_", names(dash.list)[i] ,".pdf")
savePDF(file.name = paste0(output.path, "PDF/", plot.name),
plot.handle = (dash.list[[i]]),
fig.width = 30, fig.height = 12, save.flag = parameter.list$general.save.pdf)
}
```
Associations
=====================================
Sidebar {.sidebar}
-------------------------------------
---
**Description**: Feature association table and similarity matrix.\
---
**Association table**. Top features associated with the query features.\
**Similarity matrix**. Heatmap of hierarchically-clustered similarity between query- (x-axis) and associated- (y-axis) features. *Note* that if only one query feature was provided, a rank plot showing the top associated features is shown instead.\
**Note**, for both of the above reports, only the top N associated features are shown, and this may not reflect the entire list of associated features.
**Significant associations**. Table of summarizing all features that were significantly associated with the query feature(s) (FDR < 0.001).
---
Row {.tabset}
-------------------------------------
### Association Table
```{r correlation table - top}
if (class(cor.mat.sub) == "matrix"){
df.cor.list.sub <- df.cor.list[df.cor.list$genes %in% rownames(cor.mat.sub), ]
} else if (class(cor.mat.sub) == "numeric"){
df.cor.list.sub <- df.cor.list[df.cor.list$genes %in% names(cor.mat.sub), ]
}
if (parameter.list$general.save.pdf){
write.csv(cor.mat, file = paste0(output.path, "Tables/", "correlations.csv"),
row.names = T)
}
flex.asDT(df.cor.list.sub)
```
### Similarity Matrix
```{r query similarity heatmap - top, fig.width=10, fig.height=13}
try({
if (length(markers_of_interest) == 1){
plt.dis.rank.cor <- cowplot::plot_grid(cowplot::plot_grid(plt.cor.dist, NULL, rel_heights = c(1,2), ncol = 1), plt.ranked.cor.sub, ncol = 2)
savePDF(file.name = paste0(output.path, "PDF/", "M06_ranked_correlations.pdf"),
plot.handle = plt.dis.rank.cor,
fig.width = 10, fig.height =13, save.flag = parameter.list$general.save.pdf)
print(plt.dis.rank.cor)
} else {
savePDF(file.name = paste0(output.path, "PDF/", "M06_similarity_heatmap.pdf"),
plot.handle = plt.heat,
fig.width = 10, fig.height =13, save.flag = parameter.list$general.save.pdf)
plt.heat
}
}, silent = T)
```
### Significant Associations
```{r sig feat associations}
sig_features <- namedList2wideDF(genelist)
flex.asDT(sig_features)
```
```{r save results}
# Update analysis log
n.cells.analyzed <- ncol(so.query)
df.log <- addLogEntry("N Cells", n.cells.analyzed, df.log, "n.cells.analyzed")
df.log <- addLogEntry("Correlation Metric", parameter.list$cor.method, df.log, "cor.method")
df.log <- addLogEntry("Query Markers", markers_of_interest, df.log, "markers_of_interest")
df.log <- addLogEntry("Seurat Assay", DefaultAssay(so.query), df.log, "DefaultAssay(so.query)")
if (exists("exp.mat")) df.log <- addLogEntry("N genes for correlation", nrow(cor.mat), df.log, "nrow(cor.mat)")
if (exists("genes.not.found")) df.log <- addLogEntry("Genes not found", genes.not.found, df.log, "genes.not.found")
# Run time
end.time <- proc.time()
elapsed.time <- round((end.time - start.time)[[3]], 2)
df.log <- addLogEntry("Run Time (s)", elapsed.time, df.log, "elapsed.time")
df.log <- addLogEntry("Run Identifier", run.id, df.log, "run.id")
if (parameter.list$developer){
df.log <- addLogEntry("User", user, df.log, "user")
df.log <- addLogEntry("Central Log Updated", clog.update.success, df.log, "clog.update.success")
}
df.log_Module_6 <- df.log
```
```{r ph10, echo = FALSE, eval = TRUE}
out1 <- flex.multiTabLogs(module.logs)
```
`r paste(knitr::knit(text = paste(out1, collapse = '\n')))`
Log (M6)
=====================================
```{r table.log_current}
knitr::kable(df.log_Module_6)
```
```{r save analysis log as csv}
try({
if (parameter.list$developer){
write.csv(df.log_Module_6, file = paste0(output.path, "Tables/", "analysisLog.csv"),
row.names = F)
}
}, silent = T)
```
System Info
=====================================
```{r}
pander::pander(sessionInfo())
```