QC Overview

Row

A| QC distributions

B| Pairwise QC relationships

C| Mitochondrial content distribution

D| Cells Recovered: Pre- and Post-Filtering

Row

E| Pre- vs Post-Normalization Statistics

F| Transcripts per cell

G| Genes per cell

H| Variable gene plot

Row

Cells Recovered

9897

Genes per Cell (Median)

604

Transcripts per Cell (Median)

805

Filter and PCA Summary

Row

Filtering Statistics

PCA Scree Plots

UMAP

Row

Cell Clusters

QC Statistics

Cell Cycle

QC Tables

Row

orig.ident

Species

Barcode

dataset

SCT_snn_res.1

seurat_clusters

Phase

Variable Genes Table

Row

 [1] "GENE"                  "detection_rate"        "gmean"                
 [4] "variance"              "residual_mean"         "residual_variance"    
 [7] "theta"                 "(Intercept)"           "log_umi"              
[10] "genes_log_gmean_step1" "step1_theta"           "step1_(Intercept)"    
[13] "step1_log_umi"        

Log

Description Variable Name Value
Module Preprocessing & QC
Date Sys.time() 2022-01-24 15:45:53
Input Expression Matrix input_data C:/Users/Owner/Dropbox/PDF Projects - JM/R Packages/scMiko/data/cao2019_count_matrix.rds
gene/cell Upper Limit (N/cell) gene.upperlimit 9000
gene/cell Lower Limit (N/cell) gene.lowerlimit 200
Filtered by unmatched reads unmatched.rate.filter.flag TRUE
Mitochondrial Content Upper Limit (%/cell) mt.upperlimit 10
Data Subsampled subsampled FALSE
Cluster Resolution cluster.resolution 1
Filtered by species species.filter.flag FALSE
Number of Workers normScale 1
Variables regressed out vars2regress percent.mt
Input Species all_input_organisms
Feature selection method feature.select.method hvg
PCA component selection method pca.component.select.method cum_var
Normalization Method norm_method SCT
PCA Method pca.method pca
Principal Components Included nDim 39
Unmatched rate upper limit unmatch.high 1
Unmatched rate lower limit unmatch.low 0
nPCA components used nDim 39
Run Time (s) elapsed.time 151.66
Run Identifier run.id output_34818PM
Scaling method scale.method sct
Output Saved save.flag TRUE

System Info

R version 4.0.3 (2020-10-10)

Platform: x86_64-w64-mingw32/x64 (64-bit)

locale: LC_COLLATE=English_Canada.1252, LC_CTYPE=English_Canada.1252, LC_MONETARY=English_Canada.1252, LC_NUMERIC=C and LC_TIME=English_Canada.1252

attached base packages: parallel, stats4, stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: reticulate(v.1.20), gplots(v.3.1.1), future(v.1.22.1), DT(v.0.19), gridExtra(v.2.3), RColorBrewer(v.1.1-2), Matrix(v.1.3-4), reshape2(v.1.4.4), plyr(v.1.8.6), sctransform(v.0.3.2), schex(v.1.2.0), shiny(v.1.6.0), SingleCellExperiment(v.1.10.1), SummarizedExperiment(v.1.18.2), DelayedArray(v.0.14.1), matrixStats(v.0.61.0), Biobase(v.2.48.0), GenomicRanges(v.1.40.0), GenomeInfoDb(v.1.24.2), IRanges(v.2.22.2), S4Vectors(v.0.26.1), BiocGenerics(v.0.34.0), cowplot(v.1.1.1), WGCNA(v.1.70-3), fastcluster(v.1.2.3), dynamicTreeCut(v.1.63-1), ggpubr(v.0.4.0), scMiko(v.0.1.0), flexdashboard(v.0.5.2), tidyr(v.1.1.3), SeuratObject(v.4.0.2), Seurat(v.4.0.4), dplyr(v.1.0.7), ggplot2(v.3.3.5), viridis(v.0.6.2) and viridisLite(v.0.4.0)

loaded via a namespace (and not attached): ggthemes(v.4.2.4), scattermore(v.0.7), bit64(v.4.0.5), knitr(v.1.36), irlba(v.2.3.3), data.table(v.1.14.0), rpart(v.4.1-15), RCurl(v.1.98-1.3), doParallel(v.1.0.16), generics(v.0.1.0), preprocessCore(v.1.50.0), RSQLite(v.2.2.8), RANN(v.2.6.1), proxy(v.0.4-26), bit(v.4.0.4), spatstat.data(v.2.1-0), httpuv(v.1.6.3), assertthat(v.0.2.1), xfun(v.0.26), hms(v.1.1.1), jquerylib(v.0.1.4), evaluate(v.0.14), promises(v.1.2.0.1), fansi(v.0.5.0), caTools(v.1.18.2), readxl(v.1.3.1), igraph(v.1.2.6), DBI(v.1.1.1), htmlwidgets(v.1.5.4), spatstat.geom(v.2.2-2), purrr(v.0.3.4), ellipsis(v.0.3.2), crosstalk(v.1.1.1), RSpectra(v.0.16-0), backports(v.1.2.1), deldir(v.0.2-10), vctrs(v.0.3.8), ROCR(v.1.0-11), entropy(v.1.3.0), abind(v.1.4-5), cachem(v.1.0.6), withr(v.2.4.2), ggforce(v.0.3.3), RVenn(v.1.1.0), checkmate(v.2.0.0), goftest(v.1.2-2), cluster(v.2.1.0), lazyeval(v.0.2.2), crayon(v.1.4.1), pkgconfig(v.2.0.3), labeling(v.0.4.2), units(v.0.7-2), tweenr(v.1.0.2), nlme(v.3.1-149), nnet(v.7.3-14), rlang(v.0.4.11), globals(v.0.14.0), lifecycle(v.1.0.1), miniUI(v.0.1.1.1), cellranger(v.1.1.0), polyclip(v.1.10-0), lmtest(v.0.9-38), carData(v.3.0-4), zoo(v.1.8-9), base64enc(v.0.1-3), ggridges(v.0.5.3), png(v.0.1-7), bitops(v.1.0-7), KernSmooth(v.2.23-17), pander(v.0.6.4), blob(v.1.2.2), DelayedMatrixStats(v.1.10.1), classInt(v.0.4-3), stringr(v.1.4.0), parallelly(v.1.28.1), jpeg(v.0.1-9), rstatix(v.0.7.0), ggsignif(v.0.6.3), scales(v.1.1.1), memoise(v.2.0.0), magrittr(v.2.0.1), hexbin(v.1.28.2), ica(v.1.0-2), zlibbioc(v.1.34.0), compiler(v.4.0.3), concaveman(v.1.1.0), fitdistrplus(v.1.1-5), XVector(v.0.28.0), listenv(v.0.8.0), patchwork(v.1.1.1), pbapply(v.1.5-0), htmlTable(v.2.2.1), Formula(v.1.2-4), MASS(v.7.3-53), mgcv(v.1.8-33), tidyselect(v.1.1.1), stringi(v.1.7.4), forcats(v.0.5.1), glmGamPoi(v.1.0.0), highr(v.0.9), yaml(v.2.2.1), latticeExtra(v.0.6-29), ggrepel(v.0.9.1), grid(v.4.0.3), sass(v.0.4.0), tools(v.4.0.3), future.apply(v.1.8.1), rio(v.0.5.27), rstudioapi(v.0.13), foreach(v.1.5.1), foreign(v.0.8-80), farver(v.2.1.0), Rtsne(v.0.15), digest(v.0.6.27), pracma(v.2.3.3), Rcpp(v.1.0.7), car(v.3.0-11), broom(v.0.7.9), later(v.1.3.0), RcppAnnoy(v.0.0.19), org.Hs.eg.db(v.3.11.4), httr(v.1.4.2), AnnotationDbi(v.1.52.0), sf(v.1.0-2), colorspace(v.2.0-2), fs(v.1.5.0), tensor(v.1.5), splines(v.4.0.3), uwot(v.0.1.10), ggVennDiagram(v.1.1.4), spatstat.utils(v.2.2-0), plotly(v.4.9.4.1), xtable(v.1.8-4), jsonlite(v.1.7.2), R6(v.2.5.1), Hmisc(v.4.5-0), pillar(v.1.6.4), htmltools(v.0.5.2), mime(v.0.11), glue(v.1.4.2), fastmap(v.1.1.0), class(v.7.3-17), codetools(v.0.2-16), utf8(v.1.2.2), lattice(v.0.20-41), bslib(v.0.3.0), spatstat.sparse(v.2.0-0), tibble(v.3.1.4), curl(v.4.3.2), leiden(v.0.3.9), gtools(v.3.9.2), zip(v.2.2.0), GO.db(v.3.11.4), openxlsx(v.4.2.4), survival(v.3.2-13), rmarkdown(v.2.11), munsell(v.0.5.0), e1071(v.1.7-9), GenomeInfoDbData(v.1.2.3), iterators(v.1.0.13), impute(v.1.62.0), haven(v.2.4.3), gtable(v.0.3.0) and spatstat.core(v.2.3-0)

---
title: "QC and Preprocessing"
date: "`r format(Sys.time(), '%d %B, %Y')`"
output: 
  flexdashboard::flex_dashboard:
    orientation: rows
    vertical_layout: fill
    source_code: embed
    theme: 
      bootswatch: flatly
    navbar:
      - { title: "scMiko", href: "https://nmikolajewicz.github.io/scMiko/" }  
editor_options: 
  chunk_output_type: inline
knit: (function(inputFile, encoding) {
    rmarkdown::render(input = inputFile,
      encoding = encoding,
      output_file = if (exists("user")){paste0(
        xfun::sans_ext(inputFile), '_',user, "_", 
        paste0(format(Sys.time(), "%d_%b_"), gsub(" ", "_", gsub(":", "_", format(Sys.time(), "%X"))), format(Sys.time(), "_%Y")), '.html'
      )} else {paste0(xfun::sans_ext(inputFile), '_',"Guest", "_", 
      paste0(format(Sys.time(), "%d_%b_"), gsub(" ", "_", gsub(":", "_", format(Sys.time(), "%X"))), format(Sys.time(), "_%Y")), '.html')},
      output_dir = if (exists("data.path")) paste0(data.path, "/HTML_Reports") else NULL
    )
  })
---

```{r setup, include=FALSE}

# clear global enviroment
rm(list = setdiff(ls(), c("data.path", "user")))
invisible({gc()})

# initiate timer
start.time <- proc.time()

# list of packages to load
packages2load <- c('viridis', 'scMiko', 'ggpubr', 'dplyr', 'WGCNA', 'cowplot', 'schex', 'Seurat', 'sctransform', 'plyr', 'tidyr', 'reshape2', 'Matrix', 'RColorBrewer', 'ggplot2', 'gridExtra', 'DT', 'flexdashboard', 'future', 'gplots', 'reticulate')

# load packages
invisible(lapply(packages2load, library, character.only = TRUE, quietly = T))

```


```{r c2 - parameter_specification}

# specify parameters
parameter.list <- list(
  
  # input parameters
  input.object = NULL,       
  input.cell_ranger = NULL, 
  input.matrix = "C:/Users/Owner/Dropbox/PDF Projects - JM/R Packages/scMiko/data/cao2019_count_matrix.rds",
  
  # output parameters
  save.flag = T,              
  output.object.directory = "Preprocessed_Datasets/",
  output.object.file = "demo_cao2019_10000cell.Rdata",

  # analysis parameters
  subsample.n = NA, 
  cluster.resolution = 1,
  gene.upperlimit = 9000, 
  gene.lowerlimit = 200,  
  mt.upperlimit = 10,  
  unmatched.rate.filter.flag = T,
  vars2regress = c("percent.mt"), 
  correct.artifact = T,
  feature.select.method = "hvg",             # options: hvg (recommended), deviance
  scale.method = "sct",                      # option: sct (recommended), null_residuals
  pca.method = "pca",                        # option: pca (recommended), glmpca
  pca.component.select.method = "cum_var",   # options" cum_var, elbow
  pca.var.threshold = 0.9,
  conserve.memory = F,
  
  # specify species
  species.filter.flag = F,                             
  species.include = "Mm",

  # miscillaneous parameters
  nworkers = 1,
  save.pdf = F,
  print.inline = F,
  developer = F
)


```


```{r developer input}

# developer specific input formats
do.dev <- parameter.list$developer
if (do.dev){
  parameter.list$which.data = c("pilot16.Mm") # c("16-O", "17-O")
  parameter.list$which.strata = "mm_pituitary" # NA
  parameter.list$update.log = T
  
  which.data <- parameter.list$which.data  # REQUIRED 

if ("which.strata" %in% names(parameter.list)){
  which.strata <- parameter.list$which.strata # NA if no stratification
} else {
  which.strata <- NA
}
  
  if (!exists("data.path") & !exists("user")) {
    stop("data.path and user variables do not exist in global enviroment. Ensure that these are specified in .Rprofile. If specified, try restarting Rstudio.")
  }
  
  # get input data files paths
  inputDataSpecification <- function(inputs = "M01_inputs.csv", subsets = "M01_subsets.csv"){
    
    input.data <- read.csv(inputs, stringsAsFactors = F)
    colnames(input.data) <- rmvCSVprefix(colnames(input.data))
    input.data <- apply(input.data, 2, function(x) gsub("Â", "", x))
    input.data <- as.data.frame(input.data)
    
    # get subsets
    input.subset <- read.csv(subsets, stringsAsFactors = F)
    
    # wrangle into list
    u.samples <- unique(input.subset$sample)
    input.barcode.strata <- list()
    for (i in 1:length(u.samples)){
      
      subset.strata <- input.subset[input.subset$sample %in% u.samples[i], ]
      current.strata <- list()
      
      for (j in 1:nrow(subset.strata)){
        
        current.barcodes <- subset.strata$barcodes[j]
        current.barcodes <- strsplit(current.barcodes, ", ")[[1]]
        current.strata[[subset.strata$set[j]]] <- current.barcodes
      }
      
      input.barcode.strata[[u.samples[i]]] <- current.strata
      
    }
    
    return(list(
      input.data = input.data,
      input.barcode.strata = input.barcode.strata
    ))
  }
  
  input.list <- inputDataSpecification()
  input.data <- input.list$input.data
  input.barcode.strata <- input.list$input.barcode.strata
  
  # specify input 
  stopifnot(all(which.data %in% as.vector(input.data$sample)))
  specified.input <- input.data[as.vector(input.data$sample) %in% which.data, ]
  
  # get input data specifications
  input_data <- as.vector(specified.input$files)
  input_pcr_barcodes <- as.vector(specified.input$pcr.barcodes)
  input_rt_barcodes <- as.vector(specified.input$rt.barcodes)
  input_set <- c(input_data, input_pcr_barcodes, input_rt_barcodes)
  input.type <- as.vector(specified.input$input.type)
  all_input_organisms <- as.vector(specified.input$species)
  dir <- as.vector(specified.input$directory) 
  
  # ensure correct path is used for data input
  if (exists("data.path")){
    dir <- paste0(data.path, dir)
  }
  
  # ensure regression variables are correctly specified
  if (length(which.data) == 1){
    parameter.list$vars2regress <- parameter.list$vars2regress[!(parameter.list$vars2regress %in% "dataset")]
  }
  
  # get stratification details
  if (!is.na(which.strata)){
    which.strata.specified <- which.strata
    which.strata <- c()
    for (i in 1:length(which.strata.specified)){
      which.strata <- c(which.strata, input.barcode.strata[[which.data[i]]][[which.strata.specified[i]]])
    }
  } 
  
  # ensure correct directory is specified
  stopifnot(exists("input.type")) 
  
  # ensure input data are specified
  stopifnot(exists("input_set")) 
  
  try({
    parameter.list$species.include <- rep(parameter.list$species.include, length(input_data))
  }, silent = T)
  
  # if set_names are not specified, set_names <-  ""
  if (exists("parameter.list$set_names")){
    stopifnot(is.character(parameter.list$set_names))
  } else {parameter.list$set_names <- ""}
  
  # if pilot input are not specified, pilot_input <-  ""
  if (exists("pilot_input")){
    stopifnot(length(pilot_input) == 1)
  } else {pilot_input <- ""}
  
  total_sets <- input_set
  
} else {
  parameter.list$which.data = NA
  parameter.list$which.strata = NA
    all_input_organisms <- NULL
  # input.type <- NA
  dir <- ""
  
  which.data <- parameter.list$which.data  # REQUIRED 

if ("which.strata" %in% names(parameter.list)){
  which.strata <- parameter.list$which.strata # NA if no stratification
} else {
  which.strata <- NA
}

}



```

```{r specify input pathways}


if (!exists("input.type")){


if ("input.object" %in% names(parameter.list)){
  if (!is.na(parameter.list$input.object) && !is.null(parameter.list$input.object)){
    input_data <- total_sets <- parameter.list$input.object
    input.type <- 0
  }
} 

if ("input.cell_ranger" %in% names(parameter.list)){
  if (!is.na(parameter.list$input.cell_ranger) && !is.null(parameter.list$input.cell_ranger)){
    input_data <- total_sets <- parameter.list$input.cell_ranger
    input.type <- 2
  }
} 

if ("input.matrix" %in% names(parameter.list)){
  if (!is.na(parameter.list$input.matrix) && !is.null(parameter.list$input.matrix)){
    input_data <- total_sets <- parameter.list$input.matrix
    input.type <- 3
  }
} 
  
    
}

```


```{r c4 - analysis log}

df.log <- initiateLog("Preprocessing & QC")

if (input.type == 1){
  df.log <- addLogEntry("Input Data (.Rdata)", input_data, df.log, "input_data")
  df.log <- addLogEntry("Input RT Barcode (.txt)", input_rt_barcodes, df.log, "input_rt_barcodes")
  df.log <- addLogEntry("Input PCR Barcode (.txt)", input_pcr_barcodes, df.log, "input_pcr_barcodes")
} else if (input.type == 2){
  df.log <- addLogEntry("Input Cell Ranger", input_data, df.log, "input_data")
} else if (input.type == 3){
  df.log <- addLogEntry("Input Expression Matrix", input_data, df.log, "input_data")
} else if (input.type == 0){
  df.log <- addLogEntry("Seurat object", input_data, df.log, "input_data")
}

df.log <- addLogEntry("gene/cell Upper Limit (N/cell)", 
                      as.character(parameter.list$gene.upperlimit), df.log, "gene.upperlimit")
df.log <- addLogEntry("gene/cell Lower Limit (N/cell)", 
                      as.character(parameter.list$gene.lowerlimit), df.log, "gene.lowerlimit")
df.log <- addLogEntry("Filtered by unmatched reads", 
                      as.character(parameter.list$unmatched.rate.filter.flag), df.log, "unmatched.rate.filter.flag")
df.log <- addLogEntry("Mitochondrial Content Upper Limit (%/cell)", 
                      as.character(parameter.list$mt.upperlimit), df.log, "mt.upperlimit")

if ("subsample_factor" %in% names(parameter.list)){
  if (parameter.list$subsample_factor == 1){subsampled <- FALSE} else {subsampled <- TRUE}
} else {
  parameter.list$subsample_factor <- 1
  subsampled <- FALSE
}

df.log <- addLogEntry("Data Subsampled", subsampled, df.log, "subsampled")
df.log <- addLogEntry("Cluster Resolution", as.character(parameter.list$cluster.resolution), 
                      df.log, "cluster.resolution")
df.log <- addLogEntry("Filtered by species", 
                      as.character(parameter.list$species.filter.flag), df.log, "species.filter.flag")

if (parameter.list$species.filter.flag) {
  df.log <- addLogEntry("Species Included", 
                        as.character(parameter.list$species.include), df.log, "species.include")
}
df.log <- addLogEntry("Number of Workers", as.character(parameter.list$nworkers), df.log, "normScale")

if (!is.na(which.strata)) {
  df.log <- addLogEntry("Barcode(s) Included", which.strata, df.log, "which.strata")
}

df.log <- addLogEntry("Variables regressed out", 
                      as.character(parameter.list$vars2regress), df.log, "vars2regress")
df.log <- addLogEntry("Input Species", all_input_organisms, df.log, "all_input_organisms")

df.log <- addLogEntry("Feature selection method", 
                      parameter.list$feature.select.method, df.log, "feature.select.method")
df.log <- addLogEntry("PCA component selection method", 
                      parameter.list$pca.component.select.method, df.log, "pca.component.select.method")



```

```{r c6 - load_data}

# Run import function
so.list <- list()
gNames.list.list <- list()

# sequence indices
idx.seq <- c(1, 1+length(input_data), 1+(2*length(input_data)))

# assertions
stopifnot(length(dir) == length(input_data))

for (i in 1:length(input_data)){
  if (input.type[i] == 0){
    output.list <-  list(so =  readRDS(file = input_data[i]),
                         gnames = NULL)

    output.list$so <-  CreateSeuratObject(counts = output.list[["so"]]@assays[["RNA"]]@counts, 
                                          meta.data =  output.list[["so"]]@meta.data)
    output.list$so@meta.data$Barcode = "unspecified"
    output.list$so@meta.data$Species = "unspecified"
  } else {
    cur.total_sets <- total_sets[idx.seq + (i-1)]
    
    io <- NULL
    try({
      io <- stringr::str_trim(unlist(strsplit(all_input_organisms[i], ","))) 
    }, silent = T)
   
    
    if (input.type[i] == 1) {
      output.list <- loadMoffat(import_set = cur.total_sets, 
                                subsample_factor = parameter.list$subsample_factor, 
                                input_organisms = io , 
                                organism_include = parameter.list$species.include[i], 
                                dir = dir[i])
    } else if (input.type[i] == 2){
      output.list <- loadCellRanger(import_set = cur.total_sets, 
                                    input_organisms = io, 
                                    dir = dir[i])
    } else if (input.type[i] == 3){
      output.list <- loadMat(file = cur.total_sets, 
                             dir =  dir[i])
    } 
  }
  # unlist outputs
  so.list[[i]] <- output.list[[1]]
  
  gNames.list.list[[i]] <- output.list[[2]]
  if ((unique(so.list[[i]]@meta.data[["Barcode"]]) == "unspecified") ){
    so.list[[i]]@meta.data[["Barcode"]] <- paste("T", i, sep = "")
  } else if (is.na(unique(so.list[[i]]@meta.data[["Barcode"]]))){
    stop("Barcodes incorrectly specified") 
  }
  
}

# assign set labels and merge seurat objects if multiple present
for (i in 1:length(so.list)){
  if (length(which.data) == length(which.strata)){
    set.label <- paste0(which.data[i],"_", which.strata[i])
  } else {
    set.label <- which.data[i]
  }
  so.list[[i]][["dataset"]] <- set.label
}

so <- mergeSeuratList(so.list)
rm(so.list);
rm(output.list);
invisible({gc()})

# consolidate gene lists
try({
  df.gname <- unique(bind_rows(lapply(gNames.list.list, function(x) data.frame(ensembl = names(x), gene = as.character(x)))))
gNames.list <- df.gname$gene
names(gNames.list) <- df.gname$ensembl
so@misc[["g2e"]] <- gNames.list
}, silent = T)

```

```{r c8 - filter_data_by_subset, include = FALSE}

# define subset parameters
if ("species.include" %in% names(parameter.list)){
  if (sum(c("Mm", "Hs") %in%  parameter.list$species.include) > 0){
    subset.df <- data.frame(field = "Species", subgroups = parameter.list$species.include)
  }
  
  # subset data
  if (sum(parameter.list$species.include %in% so@meta.data$Species) > 0){
    so <- subsetSeurat(so, subset.df)
  }

} 

if ("subsample.n" %in% names(parameter.list)){
 so <-  downsampleSeurat(object = so, subsample.n = parameter.list$subsample.n)
}


```

```{r c9 - subset barcodes, include = FALSE}

if (!is.na(which.strata)) so <- barcodeLabels(so, which.strata)

```


```{r c10 - get_mt_content, include = FALSE}

# MITOCHONDRIAL CONTENT
so <- getMitoContent(so, gNames = so@misc[["g2e"]])

```


```{r c11 - barcode rankings, fig.width= 15, fig.height=5, include = FALSE}

# get metadata
df.meta.qc <- so@meta.data

# rank QC metrics
df.meta.qc$rank.umi <- rank(-df.meta.qc$nCount_RNA)
df.meta.qc$rank.gene <- rank(-df.meta.qc$nFeature_RNA)
df.meta.qc$rank.mt <- rank(-df.meta.qc$percent.mt)

df.meta.qc$mitoOmit <- df.meta.qc$percent.mt > parameter.list$mt.upperlimit
df.meta.qc$mitoColor <- "black"
df.meta.qc$mitoColor[df.meta.qc$mitoOmit] <- "tomato"

line.col <- '#2C3E50'

plt.gene.umi.mito <- df.meta.qc %>%
  dplyr::arrange(mitoOmit) %>%
  ggplot(aes(x = nCount_RNA, y = (nFeature_RNA))) + 
  geom_point(aes(color = mitoOmit)) + 
  scale_y_continuous(trans='log10') + 
  scale_x_continuous(trans='log10') + 
  geom_hline(yintercept = parameter.list$gene.upperlimit , color = line.col, linetype = "dashed") + 
  geom_hline(yintercept = parameter.list$gene.lowerlimit, color = line.col, linetype = "dashed") + 
  xlab("Transcript counts (n/cell)") + ylab("Gene counts (n/cell)") + 
  theme_classic() + labs(title = "Transcript vs Gene Counts", caption = "dashed line: gene count thresholds\norange points: high mt content.") + 
  theme_miko(color.palette = "flatly3", center.title = T)

# generate ranking plots
plt.umi.rank.mito <- df.meta.qc %>%
  dplyr::arrange(mitoOmit) %>%
  ggplot(aes(x = rank.umi, y = (nCount_RNA))) + 
  geom_point(aes(color = mitoOmit)) + 
  scale_y_continuous(trans='log10') + 
  xlab("Cell Rank") + ylab("Transcript counts (n/cell)") + 
  theme_classic() + labs(title = "Transcript count ranking", caption = "orange points: high mt content.") + 
  theme_miko(color.palette = "flatly3", center.title = T)

plt.gene.rank.mito <- df.meta.qc %>%
  dplyr::arrange(mitoOmit) %>%
  ggplot(aes(x = rank.gene, y = (nFeature_RNA))) + 
  geom_point(aes(color = mitoOmit)) + scale_y_continuous(trans='log10') + 
  geom_hline(yintercept = parameter.list$gene.upperlimit , color = line.col, linetype = "dashed") + 
  geom_hline(yintercept = parameter.list$gene.lowerlimit, color = line.col, linetype = "dashed") + 
  xlab("Cell Rank") + ylab("Gene counts (n/cell)") + 
  theme_classic() + labs(title = "Gene count ranking", caption = "dashed line: gene count thresholds\norange points: high mt content.") + 
  theme_miko(color.palette = "flatly3", center.title = T)

plt.mt.rank.mito <- df.meta.qc %>%
  dplyr::arrange(mitoOmit) %>%
  ggplot(aes(x = rank.mt, y = (percent.mt))) + 
  geom_point(aes(color = mitoOmit)) + scale_y_continuous(trans='log10') + 
  geom_hline(yintercept = parameter.list$mt.upperlimit, color = line.col, linetype = "dashed")  + 
  xlab("Cell Rank") + ylab("Mitochondrial Content (%/cell)") + 
  theme_classic() + labs(title = "Mitochondrial content ranking", caption = "orange: high mt content.") + 
  theme_miko(color.palette = "flatly3", center.title = T)


if (input.type == 1){
  
  unmatch.median <- median(df.meta.qc$unmatched.rate)
  unmatch.mad <- mad(df.meta.qc$unmatched.rate, unmatch.median)
  
  if (parameter.list$unmatched.rate.filter.flag){
    unmatch.high <- unmatch.median + (1.96*unmatch.mad)
    unmatch.low <- unmatch.median - (1.96*unmatch.mad)
  } else {
    unmatch.high <- 1
    unmatch.low <- 0
  }

  df.meta.qc$matchOmit <- (df.meta.qc$unmatched.rate > unmatch.high) | (df.meta.qc$unmatched.rate < unmatch.low)
  # df.meta.qc$matchColor <- "black"
  # df.meta.qc$matchColor[df.meta.qc$matchOmit] <- "skyblue"
  
  plt.unmatch.umi <- df.meta.qc %>%
    dplyr::arrange(matchOmit) %>%
    ggplot(aes(x = nCount_RNA, y = (unmatched.rate))) + 
    geom_point(aes(color = matchOmit))  + 
    xlab("Transcript Count") + ylab("Unmatched Rate") + 
    geom_hline(yintercept = unmatch.high, color = line.col, linetype = "dashed")  + 
    geom_hline(yintercept = unmatch.low, color = line.col, linetype = "dashed")  + 
    theme_classic() + labs(title = "Transcript count vs. unmatched rate", caption = "orange: unmatched rate outliers") + 
  theme_miko(color.palette = "flatly3", center.title = T)
  
  df.meta.qc$unmatch.rank <- rank(-df.meta.qc$unmatched.rate)
  plt.umatch.rank <- df.meta.qc %>%
    dplyr::arrange(matchOmit) %>%
    ggplot(aes(x = unmatch.rank, y = (unmatched.rate))) + 
    geom_point(aes(color = matchOmit)) + 
    scale_y_continuous(trans='log10') + 
    geom_hline(yintercept = unmatch.high, color = line.col, linetype = "dashed")  + 
    geom_hline(yintercept = unmatch.low, color = line.col, linetype = "dashed")  + 
    xlab("Cell Rank") + ylab("Unmatched Rate") + 
    theme_classic() + labs(title = "Unmatched rate ranking", caption = "orange: unmatched rate outliers") + 
  theme_miko(color.palette = "flatly3", center.title = T)
  
  
  plt.gene.umi.match <- df.meta.qc %>%
    dplyr::arrange(matchOmit) %>%
    ggplot(aes(x = nCount_RNA, y = (nFeature_RNA))) + 
    geom_point(aes(color = matchOmit)) + 
    scale_y_continuous(trans='log10') + 
    scale_x_continuous(trans='log10') + 
    geom_hline(yintercept = parameter.list$gene.upperlimit , color = line.col, linetype = "dashed") + 
    geom_hline(yintercept = parameter.list$gene.lowerlimit, color = line.col, linetype = "dashed") + 
    xlab("Transcript counts (n/cell)") + ylab("Gene counts (n/cell)") + 
    theme_classic() + labs(title = "Transcript vs Gene Counts", caption ="orange: unmatched rate outliers") + 
  theme_miko(color.palette = "flatly3", center.title = T)
  
  # generate ranking plots
  plt.umi.rank.match <- df.meta.qc %>%
    dplyr::arrange(matchOmit) %>%
    ggplot(aes(x = rank.umi, y = (nCount_RNA))) + 
    geom_point(aes(color = matchOmit)) + 
    scale_y_continuous(trans='log10') + 
    xlab("Cell Rank") + ylab("Transcript counts (n/cell)") + 
    theme_classic() + labs(title = "Transcript count ranking", caption = "orange: unmatched rate outliers") + 
  theme_miko(color.palette = "flatly3", center.title = T)
  
  plt.gene.rank.match <- df.meta.qc %>%
    dplyr::arrange(matchOmit) %>%
    ggplot(aes(x = rank.gene, y = (nFeature_RNA))) + 
    geom_point(aes(color = matchOmit)) + scale_y_continuous(trans='log10') + 
    geom_hline(yintercept = parameter.list$gene.upperlimit , color = line.col, linetype = "dashed") + 
    geom_hline(yintercept = parameter.list$gene.lowerlimit, color = line.col, linetype = "dashed") + 
    xlab("Cell Rank") + ylab("Gene counts (n/cell)") + 
    theme_classic() + labs(title = "Gene count ranking", caption = "orange: unmatched rate outliers") + 
  theme_miko(color.palette = "flatly3", center.title = T) 
  
  plt.mt.rank.match <- df.meta.qc %>%
    dplyr::arrange(matchOmit) %>%
    ggplot(aes(x = rank.mt, y = (percent.mt))) + 
    geom_point(aes(color = matchOmit)) + scale_y_continuous(trans='log10') + 
    geom_hline(yintercept = parameter.list$mt.upperlimit, color = line.col, linetype = "dashed")  + 
    xlab("Cell Rank") + ylab("Mitochondrial Content (%/cell)") + 
    theme_classic() + labs(title = "Mitochondrial content ranking", caption = "orange: unmatched rate outliers") + 
  theme_miko(color.palette = "flatly3", center.title = T) 
  
} else {
  plt.umatch.rank <- NULL
  plt.unmatch.umi <- NULL
  unmatch.high <- 1
  unmatch.low <- 0
}

if (parameter.list$print.inline) {
 cowplot::plot_grid(plt.gene.umi.mito, plt.umi.rank.mito, plt.gene.rank.mito, plt.mt.rank.mito, ncol = 4, align = "h") 
  
  if (input.type == 1){
    ggpubr::ggarrange(plt.umi.rank.match, plt.gene.rank.match, plt.mt.rank.match,
                      plt.unmatch.umi, plt.gene.umi.match, plt.umatch.rank,ncol = 3, nrow = 2) 
  }
}



```


```{r c12 - Density plot of % mitochondrial genes, warning = FALSE, include = FALSE}

# MITOCHONDRIAL CONTENT DISTRIBUTIONS

calc_mito_content_by_bc <- function(so, set_name, bc_info_flag, input.type = 1){
  
  if (bc_info_flag == TRUE & input.type != 2){   
    # Compute mitochrondrial content for each cell type
    
    # get unique cell types
    barcodes <-unique(so@meta.data[["Barcode"]])
    
    # create dataframe to store mitochondrial content, stratified by cell type
    df_by_bc <- NULL
    
    # for each cell type
    for (i in 1:length(barcodes)) {
      percent.mt_by_bc <- as.vector(so$percent.mt[so$Barcode == barcodes[i]])
      count.feature_by_bc <- as.vector(so$nFeature_RNA[so$Barcode == barcodes[i]])
      count.rna_by_bc <- as.vector(so$nCount_RNA[so$Barcode == barcodes[i]])
      n_cells <- length(percent.mt_by_bc)
      cur_length <- dim(df_by_bc)[1]
      
      # get QC parameters for each cell sample
      df_by_bc <- bind_rows(
        df_by_bc,
          data.frame(barcode = barcodes[i],
                     percent.mt = percent.mt_by_bc,
                     count.feature = count.feature_by_bc,
                     count.rna = count.rna_by_bc)
      )
      
    }
  } else { # if no cell type information provided, pool everything together
    df_by_bc <- data.frame()
    percent.mt_by_bc <- as.vector(so$percent.mt)
    count.feature_by_bc <- as.vector(so$nFeature_RNA)
    count.rna_by_bc <- as.vector(so$nCount_RNA)
    df_by_bc <- data.frame(percent.mt_by_bc, count.feature_by_bc, count.rna_by_bc)
    colnames(df_by_bc) <- c("percent.mt", "count.feature", "count.rna")
    df_by_bc["barcode"] <-"unspecified"
    barcodes <- "unspecified"
    so@meta.data[["Barcode"]] <-  "unspecified"
  }
  
  # Create summary graphs 
  # plot density plot
  plt.handle <- ggplot(df_by_bc, aes(percent.mt, color=barcode)) + 
    geom_density(size = 1) + 
    ggtitle(paste(set_name)) + 
    xlab("Mitochrondrial Content (%)")
  
  output <- list(so, plt.handle)
  return(output)
}

# calculate mitochondrial content, stratified by barcode (if available)
output_by_bc <- calc_mito_content_by_bc(so, parameter.list$set_names, (length(total_sets)>1), input.type)

# retrive results
so <- output_by_bc[[1]]
plt.mito_by_bc <- output_by_bc[[2]] 

# show mito filter threhsold
if ("mt.upperlimit" %in% names(parameter.list)){
  if (parameter.list$mt.upperlimit >=0 & parameter.list$mt.upperlimit <= 100){
    plt.mito_by_bc <- plt.mito_by_bc + geom_vline(xintercept = parameter.list$mt.upperlimit, linetype = "dashed")
  }
}

try({
  if (ulength(so$Barcode) == 1){
    plt.mito_by_bc <- plt.mito_by_bc + theme_miko(color.palette = "flatly2")
  }
})

if (parameter.list$print.inline){
  print(plt.mito_by_bc)
}

```


```{r c13 - qc_violin_plots, fig.height= 5, fig.width = 12, include = FALSE}

if (length(unique(so@meta.data[["subset_group"]]))> 1){
  df.qc <- data.frame(so@meta.data[["subset_group"]],  
                      so@meta.data[["nFeature_RNA"]], 
                      so@meta.data[["nCount_RNA"]], 
                      so@meta.data[["percent.mt"]]) 
  colnames(df.qc) <- c("group", "nFeature_RNA", "nCount_RNA", "percent.mt")
  
  df.qc_sum <- df.qc %>%
    group_by(group) %>%
    summarize(nFeature_mean = round(mean(nFeature_RNA),2),
              nCount_mean = round(mean(nCount_RNA),2),
              percent.mt_mean = round(mean(percent.mt),2), 
              nFeature_median = round(median(nFeature_RNA),2),
              nCount_median = round(median(nCount_RNA),2),
              percent.mt_median = round(median(percent.mt),2))
  
  nFeat_aov <- summary(aov(nFeature_RNA ~ group, data = df.qc))
  nCount_aov <- summary(aov(nCount_RNA ~ group, data = df.qc))
  mT_aov <- summary(aov(percent.mt ~ group, data = df.qc))
} else {
  df.qc <- data.frame()
  df.qc_sum <- data.frame()
  nFeat_aov <- c()
  nCount_aov <- c()
  mT_aov <- c()
}

plt.QC_violin <- tryCatch({
  violin.list <- QC.violinPlot(so, plt.log.flag = T, cols = alpha('#2C3E50', alpha = 0.5))
  cowplot::plot_grid(violin.list[[1]])
}, error = function(e){
  violin.list <- QC.violinPlot(so, plt.log.flag = T)
  return(cowplot::plot_grid(violin.list[[1]]))
})

if (parameter.list$print.inline){
  print(plt.QC_violin) 
}


```


```{r c14 - QC scatterplots, fig.height= 5, fig.width = 12, include = FALSE}

# Generate QC scatterplots
max.cells <- 40000
if (ncol(so) > max.cells) {
  plt.QC_scatter <- QC.scatterPlot(downsampleSeurat(so,  subsample.n = max.cells))
} else {
  plt.QC_scatter <- QC.scatterPlot(so)
}

if (parameter.list$print.inline)  {
  print(plt.QC_scatter)
}

```


```{r c15 - filter_QC, fig.width = 5, fig.height = 5, include = FALSE}

if (length(parameter.list$set_names) == 2) {
  set.n <- NULL
} else {
  set.n <- parameter.list$set_names
}
filter_output_list <- filterSeurat(so = so, 
                                   RNA.upperlimit = parameter.list$gene.upperlimit, 
                                   RNA.lowerlimit = parameter.list$gene.lowerlimit, 
                                   mt.upperlimit = parameter.list$mt.upperlimit, 
                                   unmatch.low = unmatch.low, 
                                   unmatch.high = unmatch.high,
                                   set_names = set.n)
so <- filter_output_list[["seurat"]]
plt.filter_pre_post <- filter_output_list[["plot"]] 
plt.filter_pre_post <- plt.filter_pre_post + theme_miko(fill.palette = "flatly2", legend = T)
filter.breakdown.list <- filter_output_list[["filter.breakdown"]]

rm(filter_output_list)


# colfunc <- colorRampPalette(c('#18BC9C','#2C3E50','#F39C12'))

plt.filter.venn <- NULL
try({
  plt.filter.venn <- ggVennDiagram::ggVennDiagram(filter.breakdown.list) + 
    scale_color_manual(values =  rep("white", length(filter.breakdown.list))) + 
    scale_fill_gradient(low = "#F4FAFE", high = '#2C3E50')
}, silent = T)


if (parameter.list$print.inline){
  print(plt.filter.venn)
  print(plt.filter_pre_post)
}


```


```{r c16 - normalize_data, warning = FALSE, include = FALSE}

# Run data normalization
normalization_method_ps <- "SCT" # "NFS" or "SCT"


if ("conserve.memory" %in% names(parameter.list) ){
  if (is.logical(parameter.list$conserve.memory)){
    conserve.memory <- parameter.list$conserve.memory
  } else {
    conserve.memory <- F
  }
} else {
  conserve.memory <- F
}

enable.parallelization <- F
if (parameter.list$nworkers == 1) enable.parallelization <- F

parameter.list$clip.range <- c(-sqrt(x = ncol(x = so[["RNA"]])/30), 
                               sqrt(x = ncol(x = so[["RNA"]])/30))
max.memory <- 200 # numeric, in terms of Gb 

# ensure regression variables have non-zero variance
cov <- parameter.list$vars2regress
df.meta <- so@meta.data
cov <- cov[cov %in% colnames(df.meta)]
cov.regress <- c()
if (length(cov) > 0){
  for (i in 1:length(cov)){
    x <- unlist(df.meta[ , cov[i]])
    if (is.numeric(x)){
      if (var(x) > 0){
        cov.regress <- c(cov.regress, cov[i])
      }
    } else {
       cov.regress <- c(cov.regress, cov[i])
    }
  }
}
 parameter.list$vars2regress <- cov.regress


so <- tryCatch({
 scNormScale(object = so, 
              method = normalization_method_ps, 
              vars2regress = parameter.list$vars2regress,
              n.workers = parameter.list$nworkers,  
              max.memory = (max.memory*20480/20 * 1024^2), 
              enable.parallelization = enable.parallelization, 
              conserve.memory = conserve.memory,
              clip.range = parameter.list$clip.range)
}, error = function(e){
  
  if (!conserve.memory){
    conserve.memory <- T
    is.success <- F
    
    try({
      so <- scNormScale(object = so, 
                        method = normalization_method_ps, 
                        vars2regress = parameter.list$vars2regress,
                        n.workers = parameter.list$nworkers,  
                        max.memory = (max.memory*20480/20 * 1024^2), 
                        enable.parallelization = enable.parallelization, 
                        conserve.memory = conserve.memory,
                        clip.range = parameter.list$clip.range)     
      is.success <- T
    })
    
    if (!is.success){
      normalization_method_ps <- "NFS"  # "NFS" 
      so <- scNormScale(object = so, 
                        method = normalization_method_ps, 
                        vars2regress = parameter.list$vars2regress,
                        n.workers = parameter.list$nworkers,  
                        max.memory = (max.memory*20480/20 * 1024^2), 
                        enable.parallelization = enable.parallelization, 
                        conserve.memory = conserve.memory,
                        clip.range = parameter.list$clip.range)  
    }
    
  } else {
    return(NULL)
  }
  

})


if (is.null(so)) stop("Failed to normalized data. Troubleshooting required.")

nassay <- DefaultAssay(so)
if (nassay == "RNA"){
 normalization_method_ps = "NFS"
 parameter.list$scale.method <- "nfs"
} else if (nassay == "SCT"){
  normalization_method_ps = "SCT"
  parameter.list$scale.method <- "sct"
}

# plot variable genes
var.gene.orig <- so@assays[[nassay]]@var.features
plt.variable_genes <- variableGenes.Plot(so, gNames.list, parameter.list$set_names, 
                                         cols = c('#2C3E50', '#F39C12'))

plt.variable_genes <- plt.variable_genes + 
  labs(title = "Variably-Expressed Genes") + 
  theme_miko(legend = T) + 
  theme(legend.position = "bottom")

if (parameter.list$print.inline) {
  
  print(plt.variable_genes)
}

```


```{r c17 - per cell statistics, include = FALSE}

# ptm <- proc.time()
df_nCount <- data.frame(so@meta.data[["nCount_RNA"]], so@meta.data[[paste0("nCount_", nassay)]])
colnames(df_nCount) <- c("UMI/cell (raw)",  "UMI/cell (normalized)")
df_nCount_m <- melt(df_nCount)

df_nFeat <- data.frame(so@meta.data[["nFeature_RNA"]], so@meta.data[[paste0("nFeature_", nassay)]])
colnames(df_nFeat) <- c("genes/cell (raw)","genes/cell (normalized)")
df_nFeat_m <- melt(df_nFeat)

plt.UMI_per_cell <- ggplot(df_nCount_m, aes(x = value, fill = variable)) + 
  geom_density(alpha = 0.3) + scale_x_log10()+  xlab("UMI/cell") + 
  theme_miko(fill.palette = "flatly", legend= T)
plt.genes_per_cell <- ggplot(df_nFeat_m, aes(x = value, fill = variable)) + 
  geom_density(alpha = 0.3) + scale_x_log10()+   xlab("genes/cell") + 
  theme_miko(fill.palette = "flatly", legend= T)


plt.pre_post_norm <- tryCatch({
  plt.pre_post_1 <- FeatureScatter(so, feature1 = "nCount_RNA", feature2 = paste0("nCount_", nassay)) + 
  xlab("UMI/cell (raw)") + ylab("UMI/cell (normalized)") + 
  theme_miko(color.palette = "flatly2", legend= T)
  
  plt.pre_post_2 <- FeatureScatter(so, feature1 = "nFeature_RNA", feature2 = paste0("nFeature_", nassay)) + 
  xlab("Genes/cell (raw)") + ylab("Genes/cell (normalized)") + 
  theme_miko(color.palette = "flatly2", legend= T)
  
  CombinePlots(plots = list(plt.pre_post_1, plt.pre_post_2), ncol = 2, legend = 'none')
  
}, error = function(e){
  plt.pre_post_1 <- FeatureScatter(so, feature1 = "nCount_RNA", feature2 = paste0("nCount_", nassay)) + 
  xlab("UMI/cell (raw)") + ylab("UMI/cell (normalized)")  + 
  theme_miko(legend= T)
  plt.pre_post_2 <- FeatureScatter(so, feature1 = "nFeature_RNA", feature2 = paste0("nFeature_", nassay)) + 
  xlab("Genes/cell (raw)") + ylab("Genes/cell (normalized)")  + 
  theme_miko(legend= T)

  return(CombinePlots(plots = list(plt.pre_post_1, plt.pre_post_2), ncol = 2, legend = 'none'))
}, silent = T)

if (parameter.list$print.inline){
  print(plt.UMI_per_cell)
  print(plt.genes_per_cell)
  print(plt.pre_post_norm)
}

```

```{r deviance feature selection, include = FALSE}


# feature selection using deviance #############################################

# get deviant features using subset of data ####################################

if (parameter.list$feature.select.method == "deviance"){
  
  miko_message("Performing feature selection using deviance scores...")
  
  DefaultAssay(so) <- nassay
  so.sub <- downsampleSeurat(object = so, subsample.n = 20000)
  
  m <- GetAssayData(so.sub, slot = "data", assay = nassay)
  m <- m[rownames(m) %in% rownames(so.sub), ]
  m <- as.matrix(m)
  batch.factor <- as.factor(so.sub@meta.data$Barcode)
  
  devs <- scry::devianceFeatureSelection(object = m, batch = batch.factor, fam = "binomial")
  
  df.dev <- data.frame(
    gene = rownames(m),
    d = devs,
    is.var = rownames(m) %in% var.gene.orig
  ) %>% dplyr::arrange(-d)
  
  df.dev$d.norm <- df.dev$d/sum(df.dev$d)
  df.dev$d.cumsum <- cumsum(df.dev$d.norm )
  
  dev.gene <- df.dev$gene[df.dev$d.cumsum < 0.8]
  if (length(dev.gene) > 2000){
    dev.gene <- df.dev$gene[1:2000]
  }
  
  dev.gene <- dev.gene[!grepl("MT", toupper(gNames.list[dev.gene]))]
  so@assays[[nassay]]@var.features <- dev.gene
  
} else if (parameter.list$feature.select.method == "hvg"){
  
  if (!is.null(gNames.list)){
    dev.gene <- var.gene.orig[!grepl("MT", toupper(gNames.list[var.gene.orig]))]
  } else {
    dev.gene <- var.gene.orig[!grepl("MT", toupper(var.gene.orig))]
  }
  

  so@assays[[nassay]]@var.features <- dev.gene
  
}


```

```{r null model residuals, include = FALSE}

if (parameter.list$scale.method == "null_residuals"){
  
  
  m <-  GetAssayData(so, slot = "data", assay = nassay)
  m <- m[rownames(m) %in% dev.gene, ]
  so[["DEV"]] <- CreateAssayObject(counts = m)
  m <- as.matrix(m)
  batch.factor <- as.factor(so@meta.data$Barcode)
  
  # system.time({
    m.deviance <- scry::nullResiduals(
      object = m,
      fam = c("binomial"),
      type = c("deviance"),
      batch = batch.factor
    )
  # })
  
  m.deviance[is.na(m.deviance)] <- 0
  rownames(m.deviance) <- rownames(m);
  colnames(m.deviance) <- colnames(m)
  invisible({gc()})
  
  
  m.deviance[m.deviance < parameter.list$clip.range[1]] <- parameter.list$clip.range[1]
  m.deviance[m.deviance > parameter.list$clip.range[2]] <- parameter.list$clip.range[2]
  
  # parameter.list$clip.range
  so@assays[["DEV"]]@scale.data <- m.deviance
  so@assays[["DEV"]]@var.features <- dev.gene
  
  DefaultAssay(so) <- "DEV" 
  
  rm(so.sub)
  rm(m);
  rm(m.deviance);
  invisible({gc() })
  
}

```

```{r identify artifact genes, include = FALSE}

u.bc <- unique(so@meta.data$Barcode)

if (length(u.bc) > 2){
  
  # var.gene <- var.gene.orig
  var.gene <- so@assays[[DefaultAssay(so)]]@var.features
  
  miko_message("Identifying artifact genes...")
  ag.res <-  findArtifactGenes(object = so, assay = "RNA", features = var.gene, 
                               meta.feature = "Barcode", umi.count.threshold = 5, difference.threshold = 30, verbose = T)
  plt.ag <- ag.res[["plot"]]
  
  try({
    gene.rep <- checkGeneRep(reference.genes = gNames.list, query.genes = plt.ag[["data"]][["gene"]])
    if (gene.rep == "ensembl"){
      plt.ag[["data"]][["gene"]] <- as.character(gNames.list[plt.ag[["data"]][["gene"]]])
      plt.ag[["layers"]][[2]][["data"]][["gene"]] <- as.character(gNames.list[plt.ag[["layers"]][[2]][["data"]][["gene"]]])
    }      
  }, silent = T)
  
  if (parameter.list$correct.artifact){
    miko_message(paste0(length(ag.res$artifact.gene), " artifact genes omitted from PCA..."))
    var.gene.update <- var.gene[!c(var.gene %in% ag.res$artifact.gene)]
    artifact.gene <- ag.res$artifact.gene

    var.gene.update <- var.gene.update[!grepl("MT", toupper(gNames.list[var.gene.update]))]
    so@assays[[DefaultAssay(so)]]@var.features <- var.gene.update
    
    
  }
  
  if (!is.null(plt.ag)){
    plt.ag <- plt.ag + theme_miko(color.palette = "flatly3", legend = T)
  }
  if (parameter.list$print.inline) {
    print(plt.ag)
  }
  
}  else {
  var.gene <- so@assays[[DefaultAssay(so)]]@var.features
  var.gene.update <- var.gene[!grepl("MT", toupper(gNames.list[var.gene]))]
  so@assays[[DefaultAssay(so)]]@var.features <- var.gene.update
  plt.ag <- NULL
}

if (parameter.list$scale.method == "sct" & (nassay == "SCT")){
  try({
   so <- GetResidual(so, features = so@assays[[DefaultAssay(so)]]@var.features, verbose = F) 
  }, silent = T)
}




```



```{r c18 - preliminary umap}

n.dim.all <- 50

if (length(so@assays[[DefaultAssay(so)]]@var.features) == 0){
 so <- FindVariableFeatures(so)
}

# Run pca
if (parameter.list$pca.method == "pca"){
  miko_message("Running PCA...")
  so <- RunPCA(so, verbose = FALSE, features = so@assays[[DefaultAssay(so)]]@var.features, 
               npcs = n.dim.all)
} else if (parameter.list$pca.method == "glmpca"){
  miko_message("Running GLM-PCA...")
  so <- SeuratWrappers::RunGLMPCA(
    object = so,
    L = n.dim.all,
    assay = NULL,
    features = so@assays[[DefaultAssay(so)]]@var.features,
    reduction.name = "pca",
    reduction.key = "PC_",
    verbose = F,
    minibatch = "stochastic")
}

# specify number of PCA components to use for downstream analysis
pca.var.threshold <- parameter.list$pca.var.threshold
pca.prop <- propVarPCA(so)

pca.elbow.low <- 0.015
if (parameter.list$pca.component.select.method == "elbow"){
  nDim <- pcaElbow(pca.prop$pc.prop_var, low = pca.elbow.low, max.pc = 0.9)
} else if (parameter.list$pca.component.select.method == "cum_var"){
  nDim <- max(pca.prop$pc.id[pca.prop$pc.cum_sumpc.elbow_min_difference_ps) +1 
pc.nPC_method_2 <- sum(pc.cum_sum% 
  dplyr::group_by(cluster_membership, barcode_labels) %>%
  tally() %>% 
  dplyr::mutate(freq = n / sum(n)) 

u_barcodes <- unique(df.all_barcodes$barcode_labels)

if (length(u_barcodes) > 1) {
  
  # convert long to wide (cell type table)
  df_for_wide_barcodes <- df.all_barcodes
  colnames(df_for_wide_barcodes)[colnames(df_for_wide_barcodes) == "barcode_labels"] <- "predicted_labels"
  df.all_barcodes_wide <- long2wide(df_for_wide_barcodes)
  
  # plot cluster compositio by barcode
  df.cluster_annotations_barcodes <- df.all_barcodes
  colnames(df.cluster_annotations_barcodes)[colnames(df.cluster_annotations_barcodes) == "barcode_labels"] <- "predicted_labels"
  
  plt.cluster_composition_barcodes <- plot.cluster_composition_alt(df.cluster_annotations_barcodes, 
                                                                   other_threshold = 0)
  
  plt.cluster_composition_barcodes <- plt.cluster_composition_barcodes + 
    theme_miko(legend = T) + 
    ggthemes::scale_fill_ptol("Barcode") + 
    labs(title = "Cluster Composition", subtitle = "Stratified by Barcodes")
} else {
  df_for_wide_barcodes <- data.frame()
  df.all_barcodes_wide <- data.frame()
  df.cluster_annotations_barcodes <- data.frame()
  plt.cluster_composition_barcodes <- c()
  
}

if (parameter.list$print.inline) {
  print(plt.cluster_composition_barcodes)
}

```



```{r c20 - cell cycle scoring, fig.width=14, fig.height = 4}

# get cell cycle genes
s.genes <- cc.genes$s.genes
g2m.genes <- cc.genes$g2m.genes

if (length(unique(parameter.list$species.include)) > 1){
  s.genes <-  toupper(s.genes)
  g2m.genes <-  toupper(g2m.genes)
} else if (unique(parameter.list$species.include) == "Mm"){
  s.genes <-  firstup(s.genes)
  g2m.genes <-  firstup(g2m.genes)
} else if (unique(parameter.list$species.include) == "Hs"){
  s.genes <-  toupper(s.genes)
  g2m.genes <-  toupper(g2m.genes)
}

so <- ens2sym.so(so, gNames.list)

# cell cycle scoring and umap
plt.cc.umap <- tryCatch({
  
  so <- CellCycleScoring(object = so, s.features = s.genes, g2m.features = g2m.genes, set.ident = F, nbin = optimalBinSize(so))
  
  plt.cc.umap <- cluster.UMAP(
    so,
    # pt.size = scMiko::autoPointSize(nrow(so), scale.factor = 10000),
    group.by = "Phase",
    x.label = "UMAP 1",
    y.label = "UMAP 2",
    plot.name = "Cell Cycle Classifications",
    include.labels = F) 
  
}, error = function(e){
  plt.cc.umap <- NULL
  return(plt.cc.umap)
})

# cluster-level composition
plt.cc <- NULL
if ("Phase" %in% names(so@meta.data)){
  df.cc <- data.frame(clusters =  so@meta.data[["seurat_clusters"]], phase =  so@meta.data[["Phase"]])
  
  df.cc.tally <- df.cc %>%
    group_by(clusters, phase) %>%
    tally()
  
  plt.cc.compo <- df.cc.tally %>%
    ggplot(aes(x = clusters, y = n, fill = phase)) + 
    geom_bar(position="fill", stat="identity") + 
    theme_miko(legend = T) + 
    labs(title = "Cluster Composition by Cell Cycle") + 
    xlab("Cluster ID") + ylab("Relative Frequency")
  plt.cc <- cowplot::plot_grid(plt.cc.umap + ggthemes::scale_colour_tableau(),
  plt.cc.compo + ggthemes::scale_fill_tableau(), nrow = 1, labels = c("F", "G"))
    # plt.cc <- cowplot::plot_grid(plt.cc.umap + theme_miko(color.palette = "flatly2", legend = T), 
                               # plt.cc.compo + theme_miko(fill.palette = "flatly2", legend = T), nrow = 1, labels = c("F", "G"))
} 


if (parameter.list$print.inline) {
  print(plt.cc)
}

```
```{r c21 - variable gene list}

if (normalization_method_ps == "SCT"){
  df.var.meta <- so@assays[["SCT"]]@meta.features
  df.var.model <- so@assays[["SCT"]]@SCTModel.list[["model1"]]@feature.attributes
  var.gene <- so@assays[["SCT"]]@var.features
  
  if (is.null(df.var.meta$ENSEMBLE) & is.null(df.var.meta$SYMBOL)){
    df.var.model$GENE <- rownames(df.var.meta)
    df.var.meta <- df.var.model %>% dplyr::filter(GENE %in% var.gene)
  } else {
    df.var.model$ENSEMBLE <- df.var.meta$ENSEMBLE
    df.var.model$SYMBOL <- df.var.meta$SYMBOL   
    df.var.meta <- df.var.model %>% dplyr::filter(SYMBOL %in% var.gene)
  }
  
  so@assays[["SCT"]]@SCTModel.list[["model1"]]@feature.attributes <- df.var.model
  df.var.meta <- df.var.meta %>% dplyr::arrange(-residual_variance)
  
  which.round <- colnames(df.var.meta)[ !(colnames(df.var.meta) %in% c("ENSEMBLE", "SYMBOL", "genes_log_gmean_step1", "step1_theta", "step1_(intercept)", "step1_log_umi"))]
  try({df.var.meta[which.round] <- signif(df.var.meta[which.round], 3)}, silent = T)
} else {
  df.var.meta <- NULL
  try({
   df.var.meta <- so@assays[[nassay]]@meta.features
  df.var.meta <- df.var.meta %>% dplyr::filter(SYMBOL %in%  so@assays[[nassay]]@var.features)   
  })

}

```

```{r c23 - summary statistics, warning = FALSE}

meta.data <- names(so@meta.data)

# get subgroup names
quantifier.stem <- c("Count", "Feature", "percent.mt")
which.quant <- grepl(paste(quantifier.stem, collapse = "|"), meta.data)
quant.names <- meta.data[which.quant]
meta.names <- meta.data[!which.quant]

df.meta <- so@meta.data

quant.names2 <- colnames(df.meta)[unlist(lapply(df.meta, is.numeric))]
if (length(quant.names2) > 0){
  meta.names <- meta.names[!(meta.names %in% quant.names2)]
}

summary.list <- list()

for (i in 1:length(meta.names)){
  
  current.meta.name <- meta.names[i]
  if (current.meta.name %in% c("unmatched.rate", "S.Score", "G2M.Score")) next
  
  df.meta.summary <- NULL
  
  df.meta.summary <- df.meta %>%
    group_by(get(meta.names[i])) %>%
    dplyr::summarise(n.nuclei =n(),
              UMI.mean = round(mean(nCount_RNA)),
              UMI.median =  round(median(nCount_RNA)),
              UMI.min = min(nCount_RNA),
              UMI.max = max(nCount_RNA),
              genes.mean =  round(mean(nFeature_RNA)),
              genes.median =  round(median(nFeature_RNA)),
              genes.min = min(nFeature_RNA),
              genes.max = max(nFeature_RNA),
              mito.mean =  signif(mean(percent.mt),3) ,
              mito.median =  signif(median(percent.mt),3) ,
              mito.min =  signif(min(percent.mt),3) ,
              mito.max =  signif(max(percent.mt),3))
  
  
  if (nrow(df.meta.summary) > ncol(so)/2) next
  
  colnames(df.meta.summary)[1] <- meta.names[i]
  
  if (dim(df.meta.summary)[1] == 1){
    df.meta.summary <- data.frame(t(df.meta.summary)[2:dim(df.meta.summary)[2], ])
    colnames(df.meta.summary)[1] <- meta.names[i]
  } else {
    df.meta.summary <- as.data.frame(t(df.meta.summary))
    new.col.name <- as.matrix(df.meta.summary[1,])
    df.meta.summary <- as.data.frame(df.meta.summary[2:nrow(df.meta.summary),])
    colnames(df.meta.summary) <- new.col.name
  }
  
  try({
    summary.list[[meta.names[i]]] <- df.meta.summary
  }, silent = T)
  
}

```
```{r central log}

# update central log
run.id <- NULL

if (do.dev){
  
  if (!exists("user")) user <- "guest"
  
  clog.update.success <- F
  if (parameter.list$update.log){
    try({
      run.id <-  updateCentralLog(Module = "M01", input.data = which.data,
                                  input.subset = which.strata, pdf.flag = parameter.list$save.pdf)
      clog.update.success <-  T
    }, silent = F)
  }
  
  if (is.null(run.id))  {
    warning("Central log update was unsuccessful :(\n")
    run.id <- paste("M01_", user, "_", gsub(":| ", "", paste0(format(Sys.time(), '%d_%m_%X'))), sep = "", collapse = "")
  }
  
  
} else {
  run.id <- paste("output_", gsub(":| ", "", paste0(format(Sys.time(), '%X'))), sep = "", collapse = "")
  # %d_%m_
}

```



```{r analysis log}

# Normalization Method #
if (normalization_method_ps == "NFS"){
  norm_method <- "normalize, find features, scale"
} else if (normalization_method_ps == "SCT"){
  norm_method <- "SCT"
}
df.log <- addLogEntry("Normalization Method", norm_method, df.log, "norm_method")
df.log <- addLogEntry("PCA Method", parameter.list$pca.method, df.log, "pca.method")
df.log <- addLogEntry("Principal Components Included", nDim, df.log, "nDim")
df.log <- addLogEntry("Unmatched rate upper limit", unmatch.high, df.log, "unmatch.high")
df.log <- addLogEntry("Unmatched rate lower limit", unmatch.low, df.log, "unmatch.low")
df.log <- addLogEntry("nPCA components used", nDim, df.log, "nDim")

end.time <- proc.time()
elapsed.time <- round((end.time - start.time)[[3]], 2)
df.log <- addLogEntry("Run Time (s)", elapsed.time, df.log, "elapsed.time")
df.log <- addLogEntry("Run Identifier", run.id, df.log, "run.id")


if (do.dev){
df.log <- addLogEntry("User", user, df.log, "user")
df.log <- addLogEntry("Central Log Updated", clog.update.success, df.log, "clog.update.success")
}


```

```{r output path and save results}

# output path
if (!exists("data.path")) data.path = ""
output.path <- paste0(data.path, "Module_Outputs/", paste0(run.id,"_",format(Sys.time(), '%d%m%y'), "/"))

# create output directories
if (parameter.list$save.pdf) {
  dir.create(output.path)
  dir.create(paste0(output.path, "Tables/"))
  dir.create(paste0(output.path, "PDF/"))
}

parameter.list$output.object.file <- paste0(run.id, "_", parameter.list$output.object.file)

df.log <- addLogEntry("Scaling method", parameter.list$scale.method, df.log, "scale.method")
df.log <- addLogEntry("Output Saved", as.character(parameter.list$save.flag), df.log, "save.flag")

# save results to Preprocessed_Datasets/
output.object.file <- paste0(data.path, parameter.list$output.object.directory , parameter.list$output.object.file)

df.log_Module_1 <- df.log
if ((parameter.list$save.flag == TRUE) ){
  df.log <- addLogEntry("Output Results (.Rdata)", as.character(parameter.list$output.object.file), df.log, "output.object.file")
  df.log <- addLogEntry("Output Directory", as.character(parameter.list$output.object.directory), df.log, "output.object.directory")
  
  save(so, gNames.list, df.log_Module_1, file = output.object.file)
}


```



QC Overview
===================================== 

Sidebar {.sidebar }
-------------------------------------

**Description**: scRNAseq preprocessing and quality check\

**Figure Legends**:\
**A|** Distribution of gene counts, transcript counts, and mitochondrial percentage per cell.\
**B|** Relationship between QC measures. *Color* scale represents cell density.\
**C|** Distribution of mitochondial percentage per cell, stratified by samples (Barcodes).\
**D|** Number of cells pre- and post- filtering step. Percentage of omitted cells are indicated.\
**E|** Relationship between pre and post-normalized transcript and gene counts.\
**F|** Distribution of pre and post-normalized transcript counts.\
**G|** Distribution of pre and post-normalized gene counts.\
**H|** Variable gene plot.\

**Notes**:\
*For A-C*, all cells are shown (i.e., pre-filtering step)\
*For E-H*, subset of filtered cells are shown (i.e., post-filtering step)\

**Definitions**:\
**nFeature**: Number of genes.\
**nCount**: Number of transcripts.\
**percent.mt**: Percentage of mitochondrial transcripts.\
**Barcode**: Sample identifier.\

Row 
-----------------------------------------------------------------------

### A| QC distributions

```{r plt.QC_violin, fig.height= 5, fig.width = 10}

print(plt.QC_violin)

savePDF(file.name = paste0(output.path, "PDF/", "M01_QC_violin.pdf"), plot.handle = plt.QC_violin, fig.width = 10, fig.height = 5, save.flag = parameter.list$save.pdf)

```

### B| Pairwise QC relationships

```{r plt.QC_scatter, fig.height= 5, fig.width = 12}
print(plt.QC_scatter)
savePDF(file.name = paste0(output.path, "PDF/", "M01_QC_scatter.pdf"), plot.handle = plt.QC_scatter, fig.width = 12, fig.height = 5, save.flag = parameter.list$save.pdf)

```

### C| Mitochondrial content distribution 

```{r mt.mito_by_bc}
print(plt.mito_by_bc + theme_miko(legend = T))
savePDF(file.name = paste0(output.path, "PDF/", "M01_mito_by_bc.pdf"), 
        plot.handle = plt.mito_by_bc + theme_miko(legend = T), fig.width = 8, fig.height = 5, save.flag = parameter.list$save.pdf)

```

### D| Cells Recovered: Pre- and Post-Filtering

```{r plt.filter_pre_post}
print(plt.filter_pre_post + theme_miko(legend = T))
savePDF(file.name = paste0(output.path, "PDF/", "M01_filter_pre_post.pdf"), plot.handle = plt.filter_pre_post + theme_miko(legend = T), 
        fig.width = 5, fig.height = 5, save.flag = parameter.list$save.pdf)
```

Row 
-----------------------------------------------------------------------

### E| Pre- vs Post-Normalization Statistics

```{r plt.pre_post_norm}
print(plt.pre_post_norm)
savePDF(file.name = paste0(output.path, "PDF/", "M01_pre_post_norm.pdf"), plot.handle = plt.pre_post_norm, 
        fig.width = 5, fig.height = 5, save.flag = parameter.list$save.pdf)
```

### F| Transcripts per cell

```{r plt.UMI_per_cell}
print(plt.UMI_per_cell + theme_miko(legend = T))
savePDF(file.name = paste0(output.path, "PDF/", "M01_transcripts_per_cell.pdf"), plot.handle = plt.UMI_per_cell + theme_miko(legend = T), 
        fig.width = 5, fig.height = 5, save.flag = parameter.list$save.pdf)
```

### G| Genes per cell

```{r plt.genes_per_cell}
print(plt.genes_per_cell + theme_miko(legend = T))
savePDF(file.name = paste0(output.path, "PDF/", "M01_genes_per_cell.pdf"), plot.handle = plt.genes_per_cell + theme_miko(legend = T), 
        fig.width = 5, fig.height = 5, save.flag = parameter.list$save.pdf)
```


### H| Variable gene plot

```{r plt.variable_genes}

# + theme_miko(color.palette = "flatly2", legend = T)
print(plt.variable_genes )
savePDF(file.name = paste0(output.path, "PDF/", "M01_variable_genes.pdf"), plot.handle = plt.variable_genes, 
        fig.width = 5, fig.height = 5, save.flag = parameter.list$save.pdf)
```

Row 
-----------------------------------------------------------------------

### Cells Recovered
```{r valuebox1}
valueBox(ncol(so))
```

### Genes per Cell (Median)
```{r valuebox2}
valueBox(round(median(so$nFeature_RNA)))
```

### Transcripts per Cell (Median)
```{r valuebox3}
valueBox(round(median(so$nCount_RNA)))
```

Filter and PCA Summary
===================================== 

Sidebar {.sidebar }
-------------------------------------

**Description**: QC rank plots and filtering cutoffs, along with PCA summary. 

**Figure Legends**:\
**A|** Transcript vs. gene count relationship.\
**B|** Transcript count per cell ranking.\
**C|** Gene count per cell ranking.\
**D|** Mitochondrial content per cell ranking.\
**E|** Venn diagram of filtered cells, grouped by filtering criteria.\
**F|** PCA scree plot showing proportion of variance explained by each principal component.\
**G|** Cumulative variance explained by principal components.\
**H|** Artifact gene detection (Lause 2021)

Row {.tabset}
-------------------------------------

### Filtering Statistics

```{r plt QC ranks mT, fig.width = 15, fig.height = 8}
plt.QC.stat <-  cowplot::plot_grid(cowplot::plot_grid(
  plt.gene.umi.mito,  plt.umi.rank.mito, plt.gene.rank.mito,  plt.mt.rank.mito, 
  ncol = 2, labels = c("A", "B", "C", "D"), align = "h"), plt.filter.venn, labels = c("", "E")) 

print(plt.QC.stat)

savePDF(file.name = paste0(output.path, "PDF/", "M01_filtering_statistics.pdf"), 
        plot.handle =  plt.QC.stat, 
        fig.width = 15, fig.height = 8, save.flag = parameter.list$save.pdf)

```



### PCA Scree Plots

```{r plt.PCA, fig.width=10, fig.height = 4}

cowplot::plot_grid(plt.scree1, plt.scree2, ncol=2, labels=  c("F", "G"))

savePDF(file.name = paste0(output.path, "PDF/", "M01_scree.pdf"), plot.handle =  cowplot::plot_grid(plt.scree1, plt.scree2, ncol=2), 
        fig.width = 8, fig.height = 4, save.flag = parameter.list$save.pdf)

```

```{r artefact gene outpuers}

try({
  savePDF(file.name = paste0(output.path, "PDF/", "M01_artifact_genes.pdf"), plot.handle =  plt.ag,
          fig.height=7, fig.width=8, save.flag = parameter.list$save.pdf)
}, silent =T)


a1 <- knitr::knit_expand(text = sprintf("### %s\n", "Artifact Genes"))  # tab header
a2 <- knitr::knit_expand(text = sprintf("\n```{r %s, message=FALSE, warning=FALSE,  fig.height=7, fig.width=8}", 
                                        paste("artifact gene plot", 1, sep = "")))
a3 <- knitr::knit_expand(text = sprintf("\n %s", "print(plt.ag)"))
a4 <- knitr::knit_expand(text = "\n```\n") # end r chunk
a1.chunk <- paste(a1, a2, a3, a4, collapse = '\n') 

```

`r if (!is.null(plt.ag)){paste(knitr::knit(text = paste(a1.chunk, collapse = '\n')))}`

UMAP
===================================== 

Sidebar {.sidebar }
-------------------------------------

**Description**: Uniform Manifold Approximation and Projection (UMAP) plots with overlaid cluster, sample, QC and cell cycle information. 

**Figure Legends**:\
**A|** Cell cluster UMAP.\
**B|** Sample UMAP.\
**C|** Transcript count (n/cell) UMAP.\
**D|** Gene count (n/cell) UMAP.\
**E|** Mitochondrial content (%/cell) UMAP.\
**F|** Cell cycle state UMAP.\
**G|** Barplot of Relative abundances of cells in each cell cycle state, stratified by cell cluster.\

Row {.tabset}
-----------------------------------------------------------------------

### Cell Clusters

```{r, fig.width=12, fig.height=5}
print(plt.umap.combo)
  savePDF(file.name =paste0(output.path, "PDF/", "M01_umap.pdf"), plot.handle =  plt.umap.combo, 
          fig.width = 12, fig.height = 5, save.flag = parameter.list$save.pdf)
  
```



### QC Statistics


```{r UMAP QC plots, fig.width=15, fig.height=6}

plt.umap.qc

savePDF(file.name = paste0(output.path, "PDF/", "M01_QC_umap.pdf"), plot.handle =  plt.umap.qc, 
        fig.width = 12, fig.height = 6, save.flag = parameter.list$save.pdf)


```

### Cell Cycle


```{r plot cc plot, fig.width=12, fig.height=5}

try({
  print(plt.cc)
  savePDF(file.name = paste0(output.path, "PDF/", "M01_cell_cycle.pdf"), plot.handle =  plt.cc, 
        fig.width = 14, fig.height = 4, save.flag = parameter.list$save.pdf)
  
}, silent = T)

```


QC Tables
===================================== 

Sidebar {.sidebar }
-------------------------------------

**Description**:\
QC statistics stratified by factors of potential interest, including cell cluster and cell cycle. 

**Definitions**\
**n.nuclei**: number of nuclei/cells\
**UMI.mean**: mean transcript count (n/cell)\
**UMI.median**: median transcript count (n/cell)\
**UMI.min**: minimum transcript count (n/cell)\
**UMI.max**: maximum transcript count (n/cell)\
**gene.mean**: mean gene count (n/cell)\
**gene.median**: median gene count (n/cell)\
**gene.min**: minimum gene count (n/cell)\
**gene.max**: maximum gene count (n/cell)\
**mito.mean**: mean mitochondrial content (%/cell)\
**mito.median**: median mitochondrial content (%/cell)\
**mito.min**: minimum mitochondrial content (%/cell)\
**mito.max**: maximum mitochondrial content (%/cell)\



Row {.tabset}
-------------------------------------


```{r summary statistis,  echo = FALSE, eval = TRUE, message=FALSE, warning=FALSE}

out <- flex.multiTabTables(summary.list, "summary.list")

```

`r paste(knitr::knit(text = paste(out, collapse = '\n')))`


Variable Genes Table
===================================== 

Sidebar {.sidebar }
-------------------------------------

**Description**:\
Results from SCtransform workflow. In brief, variance stabilizing transformation to UMI count data was applied using regularized Negative Binomial regression model to remove unwanted effects from UMI data. See Seurat::sctransform() for details. \

**Definitions**\
gmean: geometric mean\
variance: expression variance\
genes_log_gmean_step1: log-geometric mean of genes used in initial step of parameter estimation\

**Citation**:\
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20, 296 (December 23, 2019). https://doi.org/10.1186/s13059-019-1874-1

Row 
-------------------------------------

```{r var table list}

if (!is.null(df.var.meta)){
  
  rownames(df.var.meta) <- NULL
  
 col.av <-  c( "ENSEMBLE","ENSEMBL",  "SYMBOL", "GENE", "GENES",  "mvp.mean", "mvp.dispersion", "mvp.dispersion.scaled", "mvp.variable", "detection_rate", "gmean", "variance", "residual_mean", "residual_variance", "theta", "(Intercept)", "log_umi", "genes_log_gmean_step1","step1_theta", "step1_(Intercept)", "step1_log_umi")
 col.av <- col.av[col.av %in% colnames(df.var.meta)]
  df.var.meta <- df.var.meta[ ,col.av]
  is.nums <- unlist(lapply(df.var.meta, is.numeric))  
  for (i in 1:length(is.nums)){
    if (is.nums[i]){
      df.var.meta[ ,names(is.nums)[i]] <- signif( df.var.meta[ ,names(is.nums)[i]], 3)
    }
  }
  
  flex.asDT(df.var.meta)
}


colnames(df.var.meta)

```


```{r save variable gene table}
if (!is.null(df.var.meta)){
  if (parameter.list$save.pdf){
  write.csv(df.var.meta, file = paste0(output.path, "Tables/", "variableGenes.csv"), 
    row.names = F)
  }
}
```

Log
===================================== 

```{r}
knitr::kable(df.log_Module_1)

```

```{r save analysis log as csv}

try({
  if (do.dev){
    write.csv(df.log_Module_1, file = paste0(output.path, "Tables/", "analysisLog.csv"), 
              row.names = F)      
  }
}, silent = T)

```


System Info
=====================================

```{r}

pander::pander(sessionInfo())

```